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ABSTRACT The current tendency toward increases in energy pricesmakes it necessary to discover newways
in which to provide electricity to end consumers. Cooperation among the various self-consumption facilities
that form energy communities based on networked microgrids could be a more efficient means of managing
the renewable resources that are available. However, the complexity of the associated control problem is
leading to unresolved challenges from the point of view of its formulation. The optimization of energy
exchanges amongmicrogrids in the day-ahead electricity market requires the generation of an optimal profile
for the purchase of energy from and sale of energy to the main grid, in addition to enabling the community to
be charged for any deviation from the schedule proposed in the regulation service market. Microgrids based
on renewable generation are systems that are subject to inherited uncertainties in their energy forecast whose
interconnection generates a distributed control problem of stochastic systems. Microgrids are systems of
subsystems that can integrate various components, such as hybrid energy storage systems (ESS), generating
multiple terms to be included in the associated cost function for their optimization. In this work, the
problem of solving complex distributed stochastic systems in the Mixed Logic Dynamic (MLD) framework
is addressed, as is the generate of a tractable formulation with which to generate deterministic values for both
exchange and output variables in interconnected systems subject to uncertainties using hybrid, stochastic and
distributed Model Predictive Control (MPC) techniques.

INDEX TERMS Stochastic systems, distributed control,MPC, optimizationmethods, networkedmicrogrids,
hybrid energy storage systems.

NOMENCLATURE
C Capacity (Wh).
CC Capital Cost (e).
Cost Hourly economic Cost (e/h).
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Cycles Number of life cycles.
J Cost function.
Hours Number of life hours.
LOH Level of Hydrogen (Nm3).
Ns Number of scenarios.
C Optimal Expectation of the cost function.
O Set of optimal variables.
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P Electric power (W ).
P̂ Predicted electric power (W ).
P(S)) Given probability for a certain scenario.
S Scenario.
SOC State of Charge (p.u).
z Mixed product for Electric power (W ).
δ On/Off state.
ε Minimum tolerance provided to the controller.
η Efficiency (p.u).
χ Logical degradation state.
ϑ MLD power variation in degradation state (W ).
σ Start-up state logical variable.
0 Cost of energy (e).
9 Expectation of the cost function.

SUBSCRIPTS
bat Battery.
ch Charge.
dis Discharge.
elz Electrolyzer.
exch Exchange.
fc Fuel Cell.
global Global.
grid Main grid.
a, b, 1, 2 Variable referred to microgrid a,b,1,2.
i → j Exchange between i and j.
load Load.
local Local.
pur Purchase of energy.
pv Photovoltaic system.
rem Remaining power.
sale Sale of energy.
un Uncertainty.
wt Wind turbine.

SUPERSCRIPTS
ave Average.
meas Measured.
< k > Iteration.
[S] Scenario.
req Required.
sch Schedule.

I. INTRODUCTION
The majority of developed countries are currently adopting
new energy policies based on commitments to the Paris
Agreement with the aim of reducing greenhouse gas emis-
sions by transitioning from fossil fuels to other energy
sources. In the face of the challenge of creating low/neutral
carbon-based energy systems, microgrid technology may
be a key solution by which to update traditional electric
power systems to intelligent smart grids with a high degree
of penetration by renewable energy systems. The lack of
dispatchability of the new renewable generation schemes
can be solved by structuring the power system components
into smaller management units. In this challenging paradigm,

microgrids are a key technology with which to solve system
deficiencies. Microgrids pave the way toward the deployment
of an electricity market that is completely based on renewable
generation, providing the flexibility required in order to
balance the stochastic behavior of generation sources and
consumption loads for both market and system operators.
Microgrids also could empower the role played by end users
by allowing them to become active prosumers.

As stated in [1] and [2], the combination of different energy
storage technologies provides a high degree of flexibility and
competitiveness to microgrids, since each Energy Storage
System (ESS) has its own limitations or operational costs
which can be improved if an appropriate control system
is developed. The inclusion of these advanced controllers
increases the number of constraints and variables to be
optimized, along with the complexity of the control prob-
lem and the necessary computational cost. The networked
operation of microgrids adds a degree of flexibility to
their optimization, leading to better operation results in the
electricity market, as shown in recent studies [3], [4], [5].
Different prosumers can share their energy in local markets
while participating in the day-ahead electricity market. This
joint operation could achieve lower final costs for the elec-
tricity consumption required. But the networked operation
of microgrids must confront the complexity of optimizing
interconnected stochastic systems subject to penalties for
deviation if the commitment made to the day-ahead market
is not fulfilled. The incorrect and/or uncertain management
of one microgrid could, therefore, seriously affect the whole
energy community. The optimization algorithm for energy
communities based on microgrids should be formulated by
considering a distributed and stochastic control problem of
the system (network) based on interconnected subsystems
(microgrids). Aspects related to increases in the execution
time that will allow the solver to discover the optimal solution
must also be considered when several scenarios are included,
in order to integrate uncertainty into the forecasting of the
energy produced by the microgrid [6].

It is consequently recommended that the networked
operation or the uncertainty management be included only
at the tertiary control level, where sample periods of 1 hour
are taken, while the secondary control level be applied solely
to a single microgrid that follows the references obtained in
the tertiary control [7]. Energy exchange among renewable-
energy-based microgrids will provide the possibility of
dispatching their production through electricity pools, not
only as single systems, but also acting as a network of
microgrids that achieve better results in liberalized electricity
markets. The main feature of these markets is that the
different actors have to make their offers in advance, and will
be charged for any difference between real-time production
and energy bidding [2], [6]. In this context, the sale and
purchase of energy among the different microgrids and the
main grid must be subject to a common deterministic energy
exchange, despite the stochastic behavior of renewable gen-
eration and consumption loads. As interconnected systems,
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those microgrids that decide to exchange energy with each
other will have to incur economic penalties if the neighboring
microgrid does not achieve the scheduled energy in the day-
ahead market. It is difficult to solve a deviation of this nature
at the secondary control level, at which execution times close
to real time are required. It is, therefore, necessary to obtain
deterministic profiles not only at the tertiary level for the
energy exchange with the main grid, but also for the energy
that has to be exported from/imported to the neighboring
microgrids. In order to solve these issues, procedures with
which to obtain both a deterministic exchange profile among
microgrids and a deterministic optimization of the buying and
selling of energy with the main grid in the day-ahead market,
despite the uncertainty in energy forecasting, are required.

A. LITERATURE REVIEW
The distributed and stochastic formulation for control
problems when applied to systems with a large number
of optimization variables, such as microgrids with hybrid
ESS, requires the development of customized algorithms that
can exploit the special features of their associated control
problem, such as the limitation in the dimension of the
matrices that current solvers can handle. As detailed in [8]
and [9], MPC techniques are a powerful framework with
which to solve the complexity of optimizing microgrids [10].
Their hybrid formulation makes it possible to integrate logic
and continuous decision variables [11], and stochastic MPC
(SMPC) has, therefore, recently emerged with the aim of
incorporating the probabilistic descriptions of uncertainties
into a constrained optimal control problem [12]. In a similar
direction, DistributedModel Predictive Control (DMPC) [13]
is being established as an advanced technique by which to
optimally solve distributed control problems. A complete
review of both SMPC and DMPC can be found in the
aforementioned references [12], [13]. The stochasticity of
systems is being satisfactorily resolved using SMPC in sev-
eral studies applied to a wide variety of systems. Theoretical
analyses related to distributed stochastic MPC (DSMPC)
have recently been carried out in [14], in which the problem
of large systems composed of many coupled subsystems
interacting with each other is analyzed, showing that the
propagation and perturbation of uncertainty make the control
design of such systems a complex problem. A theoretical
framework with which to solve this kind of control problem
is proposed. Firstly, the study establishes a centralized
MPC scheme that integrates the overall system dynamics
and chance constraints as a whole. Rather than solving a
non-convex and large-dimension optimization problem at
each moment, a semidefinite programming problem is stated.
The computational cost and the amount of communication
derived from a centralized framework are reduced by
developing a DSMPC based on a sequential update scheme.
This signifies that only one subsystem updates its plan by
solving the optimization problem at each instant in time.

With regard to microgrids, recent reviews concerning the
application of MPC techniques to this kind of systems can be
found in [8], [15], and [16], in which no solutions are pro-
vided for common distributed and the stochastic formulation
of complex optimization problems. It is particularly notable
that aspects concerning deterministic exchanges among
agents in distributed solutions are not addressed. SMPC
and DMPC are recent and timely techniques that are being
satisfactorily applied by the scientific community in order to
manage possible errors in the energy forecast of microgrids
and to deal with the formulation of control problems
associated with interconnected microgrids, as shown in [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], and [17]. In [18], the authors carry out a review
of networked microgrids from fundamental to advanced
research topics, while in [19] a review of the proposed
solutions for P2P energy exchanges among microgrids is
carried out. Three common gaps in the research developed
in [18] and [19] can be highlighted: i) the non-inclusion
of uncertainties in the energy forecasts for microgrids, ii)
the fact that the cost functions developed do not integrate
a large number of terms, as occurs when hybrid ESS are
included in the networked operation of microgrids, and iii)
the fact that they do not establish deterministic outputs
and exchanges among the different subsystems, despite
their inherited stochastic nature. In [3] and [20] algorithms
based on Distributed Model Predictive Control (DMPC)
techniques are applied without considering uncertainty in
the energy forecast. Solutions considering uncertainties
in the Energy Management System (EMS) of networked
microgrids can be found in [21] and [22]. The authors of
[21] propose a model in which peers negotiate together in
order to trade energy and flexibility by considering renewable
generation uncertainty. In [23], the authors propose a P2P
local electricity market for the joint trading of energy and
uncertainty using flexible loads. A new P2P model in which
both energy and uncertainty can be traded is proposed
in [24], while aspects related to cybersecurity in P2P-based
energy management are studied in [25]. A consensus-
based approach for the day-ahead market in conjunction
with a local energy-reserve market design considering
the uncertainties of renewable energy systems is studied
in [26]. The authors of [27] developed a two-stage robust
stochastic scheduling model for transactive energy-based
renewable microgrids. In the first stage problem, all the
microgrids attempted to maximize their profits by adopting
the optimal bidding strategy in the day-ahead market, while
minimizing the imbalance cost in the second stage. In [28],
the uncertainty of the electricity market is managed using
a robust data MPC framework for multi-microgrid energy
dispatch. In [29], the operation management of cooperative
microgrids was formulated in the Chance-Constraint MPC
framework, while in [30] the degradation cost of batteries
was also included in the EMS, highlighting the importance
of this term. The authors of [31] developed an optimal

VOLUME 12, 2024 44541



F. G. Torres et al.: Distributed Stochastic MPC

stochastic day-ahead scheduling problem. The stochastic
analysis of the problem includes the day-ahead energy price
as an uncertain parameter, while aspects of the operational
cost of the ESS are not included. In [32], the authors
introduce distributed microgrids integrated with buildings by
taking advantage of their peak load limiting. The proposed
algorithm is formulated as a two-stage stochastic problem:
in the first stage, the temperature setpoints of the buildings
for the next time step in each microgrid are determined,
while in the second, the power exchange decisions made
in order to limit the peak load in the microgrid network
are defined. The work carried out in [33] is focused on the
stochasticity of the multi-microgrid environment, proposing
a distributed power management algorithm with which to
minimize a sum of generation cost objective function subject
to generator constraints, including the following: supply-
demand balance constraint, individual constraint, capacity
constraint and the ramp-rate constraint. Finally, case studies
based on IEEE 30-bus, IEEE 57-bus and IEEE 300-bus
systems show the effectiveness of the proposed distributed
primal–dual consensus strategy. In [34], a distributed demand
side management (DSM) approach for smart grids that
takes uncertainty in wind power forecasting into account is
developed. A two-stage stochastic optimization with which
to operate a renewable-based microgrid with batteries is
developed in [22], but the problem of the interconnection of
microgrids is not addressed. Stochastic methodologies with
which to solve resilience problems in single microgrids are
also proposed in [35], [36], and [37].

Distributed Stochastic approaches that are applied to
systems other than microgrids are additionally found in the
existing literature, as can be observed in [38] and [39]. In [38],
the authors investigate the distributed output-feedback track-
ing control for stochastic nonlinear multi-agent systems
with time-varying delays, and propose a new distributed
stochastic homogeneous domination method. The authors
specifically design distributed output-feedback controllers
for the corresponding nominal systems. The proposed
methodology simultaneously considers time-varying delays,
unmeasurable states, and Hessian terms. The authors of [40]
focus their research on enabling multiple agents to coopera-
tively solve a global optimization problem without a central
coordinator by using a decentralized stochastic optimization
in which aspects of sensitive information are considered.
A decentralized stochastic optimization algorithm that is able
to guarantee provable convergence accuracy, even in the pres-
ence of aggressive quantization errors that are proportional
to the amplitude of quantization inputs, is proposed. In [41],
an innovative data-driven robust model predictive control
for irrigation systems is proposed. The paper integrates
both first-principle models in order to describe dynamics in
soil moisture variations, and data-driven models with which
to characterize the uncertainty in forecasting errors from
historical data. The precipitation forecast errors are analyzed,
along with the dependence of their distribution on forecast
values. In [39], a DSMPC framework is proposed using

TABLE 1. Literature related to the optimization of networked microgrids
considering forecasting uncertainties.

a stochastic cooperative game-based assistant fault-tolerant
control for distributed drive electric vehicles, considering the
uncertainty in driver behavior. The control algorithm consid-
ers the interaction among the driver, automatic steering, and
in-wheel motors. SMPC techniques are also applied to HVAC
systems for energy-efficient buildings in [42]. A common gap
in the aforementioned references related to DSMPC concerns
the formulation of DSMPC problems, with cost functions that
integrate a large number of terms. A framework with which
to obtain deterministic behavior of the exchange variables
is not addressed either, despite being an important aspect
in the common optimization of networked microgrids in the
day-ahead electricity market, as explained previously. The
gap regarding the development of optimization methods for
complex interconnected stochastic subsystems is again found
in [38] and [39].

New control schemes with which to confront the computa-
tional burden that the interconnection of stochastic complex
subsystems produce (as occurs in microgrids with hybrid
ESS) are therefore required, in which the decomposition steps
are defined in the optimization problem in order tomake them
feasible for normal computing devices.

B. MAIN CONTRIBUTIONS
As discussed in [6], the flexibility of the participation of
microgrids in electricity markets can be enhanced by the
use of hybrid ESS. The aforementioned authors confront the
optimization problem of integrating different types of ESS
subject to the inclusion of different economic criteria, such as
degradation and lifetime issues for each ESS, start-up costs,
etc., and also that of considering uncertainties in the energy
forecast. However, the methodology developed is applied
only to one microgrid, without considering the case of energy
exchange among different microgrids subject to uncertainties
in the energy forecast.

The distributed optimization of day-ahead market par-
ticipation for interconnected microgrids should confront
a distributed formulation of complex single problems,
integrating the operation cost of each microgrid component
subject to the inherited stochasticity of the energy forecast
and thus confronting the problem of avoiding penalties for
deviations from the regulation service market. According
to the literature review, while the stochasticity of energy
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generation within microgrids, along with their common
participation in the electricity markets, are topics that have
been considered in previous work related to energy trading
schemes, the coupled problem of not achieving the energy
schedule of the day-ahead market in a common operation of
two microgrids owing to the connection of two stochastic
systems has not been studied. The same can be said of the
networked operation of microgrids with hybrid ESS when
considering stochastic energy forecast scenarios.

The work described herein expands on the methodology
introduced in [3], in which the networked operation of
microgrids was solved using DMPC techniques, but by
considering a deterministic profile in the energy prediction.
It also achieves an advance in the state of the art with respect
to [6] by considering energy exchanges among microgrids,
despite uncertainties. As indicated in [3], the high number
of constraints to be introduced into the controller makes it
unfeasible (using standard computing hardware) to solve the
network optimization problem in a centralized manner when
more than two microgrids are involved. A problem related to
the computational burden is similarly found in [6], in which
more than two scenarios are considered in the stochastic
optimization problem of a microgrid with hybrid ESS. The
aim of this work is to propose a tractable methodology
with which to manage two scenarios and two microgrids
in the same optimization problem. The principal innovative
results obtained are that, despite the uncertainty in the energy
forecast that is considered, a deterministic energy schedule is
obtained for both the purchase/sale of energy with the main
grid and the energy exchange with the neighboringmicrogrid.
The algorithm is developed using stochastic and distributed
MPC techniques and mixed-integer programming.

The following features of the proposed methodology are
considered to be the main contributions of the present work:

• The development of a frameworkwith which to optimize
energy trading processes among networked microgrids,
considering the stochasticity of both energy generation
and load consumption, thus achieving deterministic
energy exchanges among microgrids and enhancing
their operation when compared to acting as individual
microgrids.

• The generation of deterministic outputs in intercon-
nected stochastic subsystems.

• The formulation of distributed stochastic optimization
problems with a large number of terms in the cost
function, thus allowing the possibility of including
the use of hybrid ESS and the operational costs of
the components of the microgrids and consequently
enhancing their participation in the day-ahead operation
as energy communities, despite their stochasticity.

In order to highlight the contributions of the present
work versus the existing references, the aforementioned
literature review is divided into three blocks: i) The first
contains theoretical papers in the field of control algorithms
in which distributed and stochastic approaches have been
developed [11], [12], [13], [14]; ii) The second encompasses

FIGURE 1. An example of four-bus networked microgrids with hybrid ESS,
considering uncertainties in the energy forecast.

works related to interconnected microgrids that consider
uncertainties in the energy forecast [1], [2], [3], [4], [5],
[6], [7], [8], [9] and [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], and iii) The remaining
papers [38], [39], [40], [41], [42] have reviewed systems
other than microgrids, in which the optimization of stochastic
interconnected systems is carried out. In Table 1, the main
criteria related to the innovative approaches shown in this
work are compared with the aforementioned blocks. As will
be noted, no previous work has produced the stated innovative
criteria.

Fig. 1 shows a schematic overview of the kind of energy
community on which this work is focused. As can be seen,
each microgrid can be composed of internal loads and
different renewable generators. Both loads and generators
are drawn inside a cloud so as to highlight the inherited
uncertainty in the energy forecast of these components of
the microgrid. Each microgrid also integrates batteries and
hydrogen as ESS that are not subject to uncertainties in the
forecast of their behavior.

C. OUTLINE OF THE PAPER
The remainder of this paper is organized as follows: The
controller, formulated as a Stochastic Distributed Model Pre-
dictive Control (SDMPC) in order to include the uncertainty
of the energy forecast, is developed in Section II, which
also describes and justifies the operation cost associated with
each storage technology used in the microgrid. The results
obtained are discussed in Section III and themain conclusions
are summarized in Section IV.

II. P2P STOCHASTIC OPTIMIZATION OF DAY-AHEAD
MARKET PARTICIPATION
The microgrid controllers are designed in order to optimize
the day-ahead participation of the network of microgrids such
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FIGURE 2. Block diagram of the proposed stochastic P2P optimization of
microgrids.

as those shown in Fig. 1 in the electricity market through P2P
energy exchanges according to the following criteria:

1) Economic Optimization: The microgrid controllers
integrate the operational costs of the microgrid compo-
nents into the model simultaneously with the electricity
market prices.

2) Uncertainties Management: The controller is for-
mulated to include the stochasticity of renewable
generators and consumers’ behavior.

3) Deterministic Energy Exchanges: It is assumed that,
independently of the stochastic nature of the energy
forecast for each microgrid, the engagement of energy
exchange must follow a deterministic profile that is
completely independent of uncertainties as regards
energy exchange with either the main grid or the
neighboring microgrid.

The block diagram of the proposed controller is shown in
Fig. 2. Each block is detailed in the following sections.

A. GENERIC FORMULATION OF THE DSMPC CONTROLLER
The optimization problem for a system of interconnected
stochastic subsystems, considering deterministic output vari-
ables and exchange variables among the different subsystems,
can be generically formulated as indicated in the expres-
sions (1)-(13). The first expression (1) corresponds to the
cost function of a distributed and stochastic system using a
multi-scenario formulation [3], [8] as the methodology with
which to consider the uncertainties in the energy forecast.
As will be noted, it is expressed in such a way that all
the sample instants of a scheduling horizon SH are added
together. The subindex i is utilized in order to mention each
microgrid inside the network N . The upper-index [Si] is
used to reference each of the scenarios considered. As can
be seen in (1), the nomenclature global is used for the
global optimization problem derived from the network of
interconnected subsystems, while the nomenclature local
is employed to refer to each local optimization problem
for each of the subsystems. The logic control signals
are expressed as δ

[Si]
i (t), while the continuous signals are

integrated with u[Si]i (t). The state variables are denoted by
x[Si]i (t) and correspond to those model variables whose value
at each sample instant depends on the previous one. The
nomenclature z[Si]i (t) is used for the mixed product [11] of
logic and continuous variables. Finally, vi→j(t) represents
the exchange variables between a generic subsystem i and

a generic neighbor subsystem j. The expressions (2)-(7)
represent the corresponding constraints related to the upper
and lower limits of the variables that integrate the model
of the plant, while the expressions (11)-(13) concern the
plant model constraints among variables using its state-space
representation by employing the MLD framework [11].
As will be noted, the model of the plant also includes its
output variables (see expression (12)), which are labeled as
yi(t). Note that in order to achieve a deterministic value for
both the output variables y[Si]i (t) and the exchange variables
v[Si]i→j(t), the constraints (9) and (10) are introduced because
these kinds of variables do not depend on the scenario Si
considered. The matrices Ai, Bi, Ci, Di and Ei represent the
relationships among the different variables that integrate the
plant model. Finally, P(Si) denotes the probability of each
given forecast scenario. As introduced in [3], the first term of
the cost function (1) penalizes the exchange variables values
so as to consider the transport losses resulting from power
flux among microgrids.

min Jglobal =

t=SH∑
t=1

(
wexch

∣∣vi→j(t)
∣∣

+

∑
∀i∈N

∑
∀Si

J [Si]i,local

(
u[Si]i (t), δ[Si]i (t), x[Si]i (t), z[Si]i (t),

vi→j(t)
)
P(Si)

)
(1)

subject to: umini ≤ u[Si]i (t) ≤ umaxi (2)

ymini ≤ yi(t) ≤ ymaxi (3)

xmini ≤ x[Si]i (t) ≤ xmaxi (4)

0 ≤ δ
[Si]
i (t) ≤ 1 (5)

0 ≤ z[Si]i (t) ≤ zmaxi (6)

vmini→j ≤ v[Si]i→j(t) ≤ vmaxi→j (7)

v[Si]i→j(t) + v
[Sj]
j→i(t) = 0 (8)

yi(t) = y[Si]i (t) ∀Si (9)

vi→j(t) = v[Si]i→j(t) ∀Si (10)

x[Si]i (t + 1)=Aix
[Si]
i (t)+Bi,uu

[Si]
i (t) + Bi,δδ

[Si]
i (t)

+

∑
j∈N

Bi→j,vvi→j(t) + Bi,zz[S](t) + Bi,dd
[S]
i (t)

(11)

y[Si]i (t) = Cix
[Si]
i (t) + Di,uu

[Si]
i (t) + Di,δδ

[Si]
i (t)

+

∑
j∈N

Di→j,vv
[Si]
i→j(t) + Di,zz[Si](t) + Di,dd

[Si]
i (t)

(12)

Ei,δδ
[Si]
i (t) + Ei,zz

[Si]
i (t) ≤ Fix

[Si]
i (t) + Ei,uu[Si](t)

+

∑
j∈N

Ei→j,vv
[Si]
i→j(t) + Ei,dd

[Si]
i (t) (13)

Asumption 1:Asmentioned in section I, the execution time
required by the solver to find the optimal solution increases
with the number of decision variables.
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Asumption 2: while the number of decision variables
increases with the number of subsystems and scenarios
considered.
Asumption 3: Both subsystems can act as single and

non-interconnected subsystems which are, in this case:
v[Si]i→j = 0.

Asumption 4: In the case of obtaining v[Si]i→j ̸= 0, the value
of Jglobal is lower than the value of Jglobal if the problem is
constrained with v[Si]i→j = 0.
In order to reduce the number of scenarios in [6],

an uncertainty band is used to introduce the stochastic
behavior of the system by applying a mean deviation to a
deterministicmean scenario Si = 0, thus generating a positive
and a negative scenario Si = +,−. A method with which
to conform the best couple of subsystems at each iteration is
similarly followed [3]. In both methodologies, the problem is
decomposed into the following steps:
Step 0. Peer-to-Peer optimization for the selected subsys-

tems a and b, considering all the combinations of the possible
deterministic scenarios.

For a number of possible scenariosNSa for the subsystem a,
and a number of scenarios NSb for the subsystem b,
the problem defined by expressions (1)-(13) is solved by
considering all the possible combinations of scenarios Sa =

1, . . . ,NSa and Sb = 1, . . . ,NSb , as specified in (14).
Note that this simplification makes it possible to follow the
procedure explained in [3], since the scenario is known at
each iteration, signifying that the problem can be solved as
a deterministic DMPC problem.

min J [Sa,Sb]global

=

t=SH∑
t=1

(
wexch

∣∣∣v[Sa,Sb]a→b (t)
∣∣∣

+

∑
∀i=a,b

J [Si]i,local(u
[Si]
i (t), δ[Si]i (t), x[Si]i (t), z[Si]i (t), v[Sa,Sb]a→b (t))


(14)

In this step, all the constraints defined in expressions
(2)-(13) are considered, with the exception of those defined
in (9) and (10). The next set of optimal variables would be
obtained after executing this step:

O[Sa,Sb]

= [u[Sa,Sb]a (t), δ[Sa,Sb]a,opt (t), x[Sa,Sb]a,opt (t), z[Sa,Sb]a,opt (t),

u[Sa,Sb]b (t), δ[Sa,Sb]b,opt (t), x[Sa,Sb]b,opt (t), z[Sa,Sb]b,opt (t), v[Sa,Sb]a→b,opt (t)]

(15)

After solving all the combinations of scenarios, the average
profile for the exchange variables is obtained as follows:

vmina→b(t) = min
(
v[Sa,Sb]a→b (t)

)
∀(Sa, Sb) (16)

vmaxa→b(t) = max
(
v[Sa,Sb]a→b (t)

)
∀(Sa, Sb) (17)

vavea→b(t) =
1
2
(vmina→b(t) + vmaxa→b(t)) (18)

Step 1. Solving the problem for all the scenarios consid-
ered, independently for each subsystem

This step calculates the value of the expectation 9i,local ,
taking into account the value of the local cost function for all
the considered scenarios and constraining v[Si]i→j(t) = 0.

C<k>
i,local = min9<k>

i,local

=

∑
∀Si

t=SH∑
t=1

J [Si]i,local(u
[Si]
i (t), δ[Si]i (t), x[Si]i (t), z[Si]i (t),

vi→j(t))P(Si)) (19)

In this step, all the constraints defined in expressions
(2)-(13) are considered. Note that in this step, the con-
straint (9) is included in order to achieve a deterministic value
of the output variables for all the possible scenarios. After
solving the problem defined in this step, the value of 9i,local
for the optimal operation point for each subsystem working
as a single system C<1>

i,local is obtained. The upper index < k >

refers to the iteration step.
Step 2. Calculation of the expectation of the cost function

for every single subsystem, considering exchange possibili-
ties

This step solves the problem defined in (20)

min9i,global

= 9i,local +
∑
∀Si

t=SH∑
t=1

(
v[Si]i→j(t) − vavei→j(t)

)2
(20)

In this step, all the constraints defined in expressions
(2)-(13) are also taken into account. Note that although
both microgrids are optimized independently, the exchange
variables v[Si]i→j(t) are considered and deterministic behavior
is imposed on them (10). After solving this step, as occurred
at Step 1, C<2>

i,local is again obtained (note that this term
evaluates only the corresponding value of 9i,local of the
expression (20)).
Step 3. Calculation of the expectation of the cost function

for every single subsystem, considering exchange possibili-
ties and constraining the local cost

The problem defined in Step 2 is again solved subject to
the following constraint:

C<3>
i,local + C<2>

j,local ≤ C<1>
i,local + C<1>

j,local (21)

Step k. Calculation of the expectation of the cost function
for every single subsystem, considering exchange possibili-
ties and constraining the local cost, taking into account the
previous result for the neighboring subsystem

This step solves the problem defined in (22)

min9i,global = 9i,local

+

∑
∀Si

t=SH∑
t=1

(
v[Si]i→j(t) + v<k−1>

j→i (t)
)2

(22)
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subject to: C<k>
i,local + C<k−1>

j,local ≤ C<1>
i,local + C<1>

j,local (23)

This step is carried out iteratively until the condition (24)
is satisfied.

v<k>
i→j (t) + v<k−1>

j→i (t) = 0 (24)

Note that if condition (24) is satisfied, the constraint
related to the deterministic behavior of the exchange variables
introduced in (10) for the stated problem before being
decomposed into the proposed steps is also satisfied. The
same is true of the constraint (8), which is related to the
complementary behavior of the exchange variables between
the subsystems involved.
Remark 1: The method is introduced for P2P optimization

between two interconnected systems. In the case of a greater
number of them, the procedure introduced in [3] to form the
best couple at each iteration can be followed.

B. APPLICATION OF THE METHOD TO A CASE STUDY
CONCERNING INTERCONNECTED MICROGRIDS WITH
HYBRID ESS
The method explained above was applied to a network
of microgrids with hybrid ESS composed of renewable
generation, local loads, batteries, an electrolyzer, a fuel cell
and a hydrogen tank. The block diagram of the case study for
a network of just two microgrids is represented in Fig. 2.
The analog inputs of the plant uuu[Si] are defined in (25).

uuu[Si]i =

[
P[Si]i,dis,P

[Si]
i,ch,P

[Si]
i,elz,P

[Si]
i,fc ,Pi,pur ,Pi,sale

]T
uuumini =

[
0, 0,Pmini,elz,P

min
i,fc , 0, 0

]T
uuumaxi =

[
Pmaxi,bat , −P

min
i,bat ,P

max
i,elz,P

max
i,fc ,Pmaxi,grid , −P

min
i,grid

]T
(25)

where P[Si]i,ch, P
[Si]
i,dis are the setpoints provided by the microgrid

Energy Management Systems (EMS) to the local controllers
of the Battery Management System for the charging or
discharging of the batteries. P[Si]i,elz and P

[Si]
i,fc are similarly the

control signals sent by the EMS to the internal controller
of the electrolyzer and the fuel cell in order to set their
power. The energy exchange with the main grid, purchasing
or selling energy in the day-ahead market, are represented
by Pi,pur and Pi,sale, which do not depend on the scenario Si
considered owing to the deterministic behavior required for
these variables.
The logic inputs of the plant δ[Si]i are represented in (26).

δ
[Si]
i = [δ[Si]i,ch, δ

[Si]
i,dis, δ

[Si]
i,elz, δ

[Si]
i,fc , σ

[Si]
i,elz, σ

[Si]
i,fc ,

χ
[Si]
i,elz, χ

[Si]
i,fc , δi,pur , δi,sale]T (26)

where δ
[Si]
i,ch and δ

[Si]
i,dis are logic variables related to the charge

and discharge states of the batteries. The electrolyzer and
fuel cell have digital inputs related to their on/off-state (δ[Si]i,elz

and δ
[Si]
i,fc ). As the start-up and shutdown processes lead to

degradation issues in the elecrolyzer and the fuel cell, the

auxiliary logic variables σ
[Si]
i,elz and σ

[Si]
i,fc are included in order

to penalize these processes. The logic variablesχ
[Si]
i,elz and χ

[Si]
i,fc

are auxiliary variables that are employed in order to represent
the instants at which the electrolyzer and the fuel cell are
in the on-state, with the exception of those at which these
devices are started-up or shut down. These logic variables are
used to penalize fluctuant operations in the electrolyzer and
the fuel cell, which also lead to degradation processes. δ[Si]i,pur

and δ
[Si]
i,sale are logic variables associated with the purchasing

and selling of energy with the main grid. The lower limit for
all the logic variables is ‘‘0’’ and the upper limit is ‘‘1’’. The
vector of mixed product variables in the plant is represented
by (27).

z[Si]i =

[
z[Si]i,ch, z

[Si]
i,dis, z

[Si]
i,elz, z

[Si]
i,fc , ϑ

[Si]
i,elz, ϑ

[Si]
i,fc , z[Si]i,pur , z

[Si]
i,sale

]T
(27)

where z[Si]i,α = P[Si]i,α · δ
[Si]
i,α are the mixed products for the

charging/discharging of the batteries, the electrolyzer, the fuel
cell and the purchasing/selling of energy, respectively. The
auxiliary mixed products ϑ

[Si]
i,elz and ϑ

[Si]
i,fc are obtained in order

to represent power increments in the electrolyzer and the fuel
cell at all their working instants, with the exception those at
which they are started-up or shut down.

The dynamic state variables of the different microgrids are
the energy level stored in the batteries, using their state of
charge SOC [Si]

i , and the level of hydrogen available in the
hydrogen vessel LOH [Si]

i , as shown in (28).

x[Si]i =

[
SOC [Si]

i ,LOH [Si]
i

]T
(28)

The exchange variables vi→j between the microgrid i and
the microgrid j represent the exchange of energy Pi→j at each
sampling instant (29).

vi→j = [Pi→j]
T
; yi =

[
Pi,grid

]T
(29)

Finally, the output variables of the microgrids (yi) are
defined through the use of the energy transactions with
the main grid Pgrid , as shown in (29). The cost function
defined in (1) can be obtained using the expressions (30)
and (31). Expression (31) corresponds to the case study of
just one microgrid [6]. In the aforementioned cost function,
CC represents the capital cost of acquisition for each
component of the microgrid. The term Cycles corresponds
to the number of cycles of the batteries. As indicated in [2],
high charge and discharge power ratios produce degradation
processes which have to be penalized, as occurs in the terms
associated with battery degradation, and these are quantified
by Costdegr,α . The electrolyzer and the fuel cell lifetimes
depend on the number of working hours Hours. Fuel cells
and electrolyzers are also degraded by starting-up cycles
and power fluctuations. These degradation mechanisms
are penalized in the terms concerning the Hydrogen ESS
Degradation. The last two terms in (31) are included in order
to maintain the energy stored in each ESS at the end of the
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schedule horizon in a reference value. Note that only those
values whose difference with the reference are negative are
penalized.

min Jglobal

=

t=SH∑
t=1

(
wexch

∣∣Pi→j(t)
∣∣)+

∑
∀i∈N

Ts
∑

Si=−,+

J [Si]i,localP(Si)

(30)

being,

J [Si]i,local

=

 k=SH∑
k=SH0

(
−0DM

sale (tk )P
[Si]
i,sale(tk ) + 0DM

pur (tk )P
[Si]
i,pur (tk )︸ ︷︷ ︸

Grid Exchange Revenue&Cost(Jgrid )

+
CCi,bat

2 · Cyclesbat

∑
α=ch,dis

P[Si]i,α (tk )︸ ︷︷ ︸
Batteries Cycling Cost

+

∑
α=ch,dis

(Costdegr,α · (P[Si]i,α (tk ))2)︸ ︷︷ ︸
Batteries ESS Degradation

+

∑
α=elz,fc

((
CCi,α
Hoursα

+ Costo&m,i,α

)
δ[Si]α (tk )︸ ︷︷ ︸

Hydrogen ESS Hourly Cost Use

+Costσ,α · σ
[Si]
i,α (tk ) + Costdegr,i,α · ϑ

2,[Si]
i,α (tk )

)
︸ ︷︷ ︸

Hydrogen ESS Degradation

+ wSOC · (SOC [Si]
i (tSH ) − SOCref

i )−︸ ︷︷ ︸
Future Uncertainties

+wLOH · (LOH [Si]
i (tSH ) − LOH ref

i )−︸ ︷︷ ︸
Future Uncertainties

 (31)

The state-space representation of the plant (11) can be
specifically defined for this case study by following the
mathematical model introduced in [2], with (32) and (33),
where Cbat stands for the capacity of the battery, and ηch
and ηdis signify the performance factors for the charging
and discharging processes of the batteries. ηfc and ηelz are
similarly the performance factors in the conversion power-
to-hydrogen carried out by the electrolyzer and the fuel cell.

SOC [Si]
i (t + 1) = SOC [Si]

i (t)

+ Ts

(
P[Si]i,ch(t) · ηi,ch

Ci,bat
−
P[Si]i,dis(t)/ηi,dis

Ci,bat

)
(32)

LOH [Si]
i (t) = LOH [Si]

i (t)

+ Ts

(
z[Si]i,elz(t) · ηi,elz −

z[Si]i,fc (t)

ηi,fc

)
(33)

FIGURE 3. Possible energy scenarios in a P2P optimization of microgrids.

As can be seen in Fig. 3, the optimization of two
interconnected microgrids is subject to different possible
energy scenarios in each microgrid. The forecast module
is based on the methodology described in [2]. It employs
the historical data of a meteorological station to obtain the
array of forecast variables composed of the hourly prediction
for the energy generated by the photovoltaic and wind
turbine generators, along with the load consumption (di =

[P̂i,pv, P̂i,wt , P̂i,load ], where the subscript i is used to make
reference to the microgrid i belonging to the network N ).
As already stated in [6], the stochasticity of these variables
is defined by including an uncertainty band in the predicted
value of the variables. A positive and negative uncertainty
band (1Pun) is, therefore, applied to an initial deterministic
scenario (Si = 0) of the remaining energy prediction P̂rem in
the microgrid, which is defined as (P̂i,rem = P̂i,pv + P̂i,wt −

P̂i,load +1Pun) for the optimistic energy scenario considered
(Si = [+]) and (P̂i,rem = P̂i,pv + P̂i,wt − P̂i,load − 1Pun)
for the pessimistic scenario considered (Si = [−]) for each
microgrid.

As occurred in [6], the uncertainty band value 1Pi,un
is obtained using the expression (34), which is based on
the average standard deviation between the value of the
predicted remaining power for the microgrid and that which
is measured, applied to each hour and each day for a complete
year, although other methods could also be applied to the
proposed algorithm [6].

1Pi,un

=
1

365
1
24

day=365∑
day=1

h=24∑
h=1

|P̂i,rem(day, h) − Pmeasi,rem(day, h)|

(34)

The terms day and h refer to the day and the hour that
the standard deviation is calculated, with P̂i,rem(day, h) being
the predicted value for the remaining power in the microgrid,
while Pmeasi,rem(day, h) is the measured value.

The forecast algorithm also calculates the energy prices for
the actions of purchasing and selling power in the day-ahead
market (0(t) = [0pur (t), 0sale(t)]).
The expression for the plant model output variables (12)

can be particularized to the case of the microgrids that are
the object of this study by means of the difference between
the purchased and the sold energy in the day-ahead market
with the main grid. The energy exchange with the main grid
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is the result of the power balance obtained for each scenario
at each sample instant (36) using the following valuesK [+]

=

1,K [−]
= −1,K [0]

= 0, as done in [6].

Pi,grid (t) = zi,pur (t) − zi,sale(t)

× P[Si]i,bat (t) = z[Si]i,dis(t) − z[Si]i,ch(t) (35)

Pi,grid (t) −

∑
j∈N

Pi→j(t) + P[Si]i,bat (t)

+ z[Si]elz (t) − z[Si]fc (t) + P̂i,pv(t) + P̂i,wt (t)

− P̂i,load (t) + K [Si]1Pi,un(t) = 0 (36)

Following the methodology introduced in [2], the expres-
sion (13) can be obtained by the linear constraints resulting
from the logic relationships between the variables u, δ and z
(expressions (37)-(42)).

z[Si]i,α (t) = P[Si]i,α (t) · δ
[Si]
i,α (t) (37)

δ[Si]α = 1 ⇔ P[Si]β ≤ 0 |
β=bat,grid
α=ch,sale (38)

0 ≤ δ[Si]α + δ
[Si]
β ≤ 1 |

β=dis,fc,pur
α=ch,elz,sale (39)

σ
[Si]
i,α (t) = δ

[Si]
i,α (t)∧ ∼ δ

[Si]
i,α (t − 1)|α=elz,fc (40)

χ
[Si]
i,α (t) = δ

[Si]
i,α (t) ∧ δ[Si]ai,α(t − 1)|α=elz,fc (41)

ϑi,α(t) = (Pi,α(t) − Pi,α(t − 1)) · χi,α(t) (42)

The symbols ∧ and ∼ stand for the logic operators AND
and NOT, respectively. As introduced with the constraints (9)
and (10), both the exchange variables and the output variables
of each subsystem have to behave in a deterministic manner.
These constraints can be particularized to our case study by
inserting the following expressions:

Pi,grid (t) = Pi,grid (t)[Si](t) ∀Si (43)

Pi→j(t) = P[Si]i→j(t) ∀Si (44)

The problem for Step 0 can be particularized to our case
study concerning the optimization problem (45), in which the
scenarios for each microgrid adopt the values Si = +,− and
Sj = +,−, and therefore, NSi = NSj = 2.

J
[Si,Sj]
global = J [Si]i,local + J

[Sj]
j,local + wexch

∣∣∣P[Si,Sj]i→j (t)
∣∣∣ (45)

After solving all the combinations of scenarios, the average
profile for the exchange of power among microgrids is
obtained as follows:

Pavei→j(t) =
1
2
Max

(
P
[Si=−,Sj=−]
i→j (t),P

[Si=−,Sj=+]
i→j (t)

P
[Si=+,Sj=−]
i→j (t),P

[Si=+,Sj=+]
i→j (t)

)
+

1
2
Min

(
P
[Si=−,Sj=−]
i→j (t),P

[Si=−,Sj=+]
i→j (t)

P
[Si=+,Sj=−]
i→j (t),P

[Si=+,Sj=+]
i→j (t)

)
(46)

In the case study described herein, Step 1 can be expressed
by defining the expectation 9i,local , considering the value of

the local cost function for all the scenarios constraining the
value of P[+]

i→j(t) = P[+]
i→j(t) = 0 considered.

C<k>
i,local = min9i,local =

∑
Si=−,+

t=SH∑
t=1

J [Si]i,localP(Si) (47)

After solving the problem defined in this step, the value
of 9i,local for the optimal operation point for each subsystem
working as single systems C<k>

i,local is obtained, as described in
Section II-A. After obtaining C<1>

i,local , Step 2 can be defined
for the case study regarding P2P energy scheduling among
networked microgrids with the expectation defined in (48):

min9i,global = 9i,local

+

∑
Si=−,+

t=SH∑
t=1

(
P[Si]i→j(t) − Pavei→j(t)

)2
(48)

After solving this step, and as occurred in Step 1, C<2>
i,local

is obtained. Note that this corresponds only to the value
of 9i,local of the expression (48). Finally, Step k solves the
problem defined in (49)

min9i,global = 9i,local

+

∑
Si=−,+

t=SH∑
t=1

(
P[Si]i→j(t) + P<k−1>

j→i (t)
)2

(49)

subject to: C<k>
i,local + C<k−1>

j,local ≤ C<1>
i,local + C<1>

j,local (50)

This step is carried out iteratively until the condition (51)
is satisfied.

P<k>
i→j (t) + P<k−1>

j→i (t) = 0 (51)

III. RESULTS
The algorithm was programmed in a MATLAB environment
using the TOMLAB® toolbox as optimization software.
The execution time required for all the steps of the controller
was 43.93 s, using a PC with an Intel® Core™ i7-9750H
@ 2.60 GHz and 16 GB of RAM installed. The different
values integrated into the controller are shown in Table 2.
The sample period selected was Ts = 1 hour and the
schedule horizon was 24 hours, as usually occurs for the
day-ahead market operation. Fig. 4 shows the results of
the price prediction carried out by the controller following
the methodology described in [2]. It is considered that
0pur (t) = 30sale(t). The different energy forecast scenarios
when considering an uncertainty band of ±5000 W for each
microgrid is shown in the left-hand graph in Fig. 5. The
procedure explained in Step 0 of Section II was followed,
and the results obtained for the energy exchanges P1→2
when considering the deterministic profiles P̂1,rem and P̂2,rem
based on the different combinations of considered scenarios
is displayed in the right-hand graph of Fig. 5. In order
to simplify, the assigned value is similar for each of the
scenarios considered P(Si = +) = P(Si = −) = 0.5.
The simulations for the SMPC controller applied to

the microgrids working as single systems (Step 1 of the
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TABLE 2. Values of the controller.

FIGURE 4. Day-ahead energy price prediction.

FIGURE 5. (a) Different energy forecast scenarios considered for both
microgrids. (b) Power exchange profiles using deterministic P2P
optimization of microgrids.

algorithm) are shown in Fig. 6, inwhich the schedule obtained
for the power of each component in the microgrid (left),
along with the evolution of the SOC and LOH (right),
can be observed. As explained previously, the different
possible combinations of scenarios and microgrids are
inserted as input data into the DMPC Controller developed
for Step 2 of the algorithm by means of a deterministic
procedure. As a result, a different energy exchange profile
is obtained depending on the energy forecast considered
for each microgrid. The result obtained for the energy
exchange when considering the four possible deterministic
energy forecast scenarios for the microgrids is shown in the
right-hand graph in Fig. 5. Finally, following the procedure
indicated in Step 3, the algorithm converges in order to

FIGURE 6. Optimization results for each microgrid working as a single
system.

find an energy exchange consensus for the day-ahead, which
has deterministic behavior, independently of the scenario
considered for each microgrid. The algorithm also obtains a
deterministic energy exchange with the main grid. The final
results of the algorithm can be observed in the graphs in
Fig. 7.

One goal of the algorithm is to achieve, in a networked
operation, a lower value of the sum of local operational costs
defined in expression (47) than that which acts as single
systems. The optimization results of Step 1, in which the
microgrids act as single systems, can be found in Fig. 6,
while the optimization results of the networked operation
are displayed in Fig. 7. The legends of both figures include
the term Preq, which indicates the exchange power required
in order to satisfy the given constraint in expression (51),
in which Preq = 0 for the case of single microgrids,
as occurs in Fig. 6. As can be seen in Fig. 7, despite the
uncertainties, a common profile for the exchanged power for
bothmicrogrids and scenarios is found after several iterations.
A common profile for the energy exchange with the main
grid is also obtained for each microgrid, independently of
the scenario considered. These can be considered as the
main achievements of this work. Note that if the most
advantageous energy forecasts S1 = + and S2 = + are sched-
uled, after which the worst possible scenario combination
S1 = − and S2 = − later arises in the real-time operation
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FIGURE 7. Optimization results for the stochatic P2P optimization of the
interconnected microgrids.

TABLE 3. Controller results for each microgrid.

of both microgrids, the schedule of energy exchange with
the main grid carried out could not be achieved, since the
corresponding penalty for deviations in the regulation service
market are applied. This provides an additional feature to the
P2P optimization of microgrids presented in [3].

The values obtained for the local cost functions of the
microgrids are shown in Table 3 for both cases: 1) Single
or independent operation of each microgrid without energy
exchange, and 2) Cooperative P2P operation, while Table 4
shows the sum of costs for both microgrids when considering
the possible scenario combinations. As can be seen, despite
the stochastic nature of the energy forecast, a deterministic
energy exchange profile that achieves a better interaction
with the main grid and reduces the operation cost of the
ESS can be obtained between both microgrids. These cost
reductions make the sum of the local cost functions evaluated
as a networkwith a P2P energy exchange lower in comparison
to the case of working as single systems (see Table 4).

TABLE 4. Comparison of results for the single and cooperative P2P
optimization.

IV. CONCLUSION
This work presents a distributed stochastic MPC approach for
interconnected systems that include a large number of terms
in their cost function and require a deterministic schedule for
both exchange and output variables.

The developments are applied to an energy community
based on networked microgrids with hybrid ESS. The results
obtained show that the energy community achieves a lower
cost for its optimization in the day-ahead market as a network
of microgrids than in the case of participating as separate
microgrids, despite considering uncertainties in the energy
forecast of both microgrids.

Two of the main challenges related to the large-scale
deployment of energy communities are confronted and
resolved. The first is that of large-scale energy storage,
which is achieved by introducing an advanced formulation
specifically developed for the management of microgrids
with hybrid ESS composed of hydrogen and batteries in spite
of the large number of terms required in the cost function
of the associated optimization problem. The use of both
technologies achieves high rates of power and energy density
in the renewable power plant. The second challenge concerns
the integration of uncertainties into the energy forecasting of
interconnected microgrids. This aspect is achieved by using
an advanced formulation for the energy optimization problem
based on distributed stochastic MPC techniques.

As can be seen from the results, despite considering a
band of uncertainty in the energy forecast of both microgrids,
they can acquire a deterministic commitment to exchanging
energy with the main power grid and with the neighboring
microgrid. The proposed methodology paves the way toward
a massive deployment of energy communities with large
energy storage facilities based on hybrid ESSs.

Peer-to-peer energy transactions involve many entities,
each with its own generation and consumption profiles.
As the number of market participants increases, the compu-
tational burden grows. The objective of this algorithm is to
solve the schedule of interconnected microgrids, and it is,
therefore, an off-line optimization method to be used before
the day-ahead market closes. The computational burden can
be solved with simply a correct anticipation of the day-ahead
market session closure, depending on the number of market
participants involved.

Moreover, although the paper is focused on networked
microgrids, the proposed methodology can be applied in
order to solve the problem of coupled uncertainties in
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interconnected systems. Future developments will address
the problem of including different scenarios with different
probabilities so as to create a more generalized distributed
stochastic framework.
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