
1 
 

Methods for interpolating missing data in aerobiological databases 1 

Picornell, A.a,*; Oteros, J.b,c; Ruiz-Mata, R.a; Recio, M.a; Trigo, M.M.a; Martínez-2 

Bracero, M.b,c,d; Lara, B.e; Serrano-García, A e; Galán, C.b,c; García-Mozo, H.b,c; 3 

Alcázar, P.b,c; Pérez-Badia, R.e; Cabezudo, B.a; Romero-Morte, J.e, Rojo, J.e,f 4 

a. Department of Botany and Plant Physiology. University of Malaga. 5 

Campus de Teatinos s/n E-29071. Malaga (Spain). 6 

b. Department of Botany, Ecology and Plant Physiology. Agrifood Campus 7 

of International Excellence CeiA3, University of Cordoba. Cordoba 8 

(Spain). 9 

c. Andalusian Inter-University Institute for Earth System IISTA, University of 10 

Cordoba, Spain. 11 

d. School of Chemical and Pharmaceutical Sciences. Technological 12 

University Dublin. Dublin (Ireland). 13 

e. University of Castilla-La Mancha. Institute of Environmental Sciences 14 

(Botany). Toledo (Spain). 15 

f. Department of Pharmacology, Pharmacognosy and Botany, Complutense 16 

University. Madrid (Spain). 17 

* Corresponding author: Antonio Picornell 18 

Department of Botany and Plant Physiology, University of Malaga. 19 

Campus de Teatinos s/n, Malaga, E-29071, Spain.  20 

E-mail address: picornell@uma.es 21 

+34 952131912  22 



2 
 

Abstract 23 

Missing data is a common problem in scientific research. The availability of 24 

extensive environmental time series is usually laborious and difficult, and 25 

sometimes unexpected failures are not detected until samples are processed. 26 

Consequently, environmental databases frequently have some gaps with missing 27 

data in it. Applying an interpolation method before starting the data analysis can 28 

be a good solution in order to complete this missing information. Nevertheless, 29 

there are several different approaches whose accuracy should be considered and 30 

compared. In this study, data from 6 aerobiological sampling stations were used 31 

as an example of environmental data series to assess the accuracy of different 32 

interpolation methods. For that, observed daily pollen/spore concentration data 33 

series were randomly removed, interpolated by using different methods and then, 34 

compared with the observed data to measure the errors produced. Different 35 

periods, gap sizes, interpolation methods and bioaerosols were considered in 36 

order to check their influence in the interpolation accuracy. The moving mean 37 

interpolation method obtained the highest success rate as average. By using this 38 

method, a success rate of the 70% was obtained when the risk classes used in 39 

the alert systems of the pollen information platforms were taken into account. In 40 

general, errors were mostly greater when there were high oscillations in the 41 

concentrations of biotic particles during consecutive days. That is the reason why 42 

the pre-peak and peak periods showed the highest interpolation errors. The 43 

errors were also higher when gaps longer than 5 days were considered. So, for 44 

completing long periods of missing data, it would be advisable to test other 45 

methodological approaches. A new Variation Index based on the behaviour of the 46 

pollen/spore season (measurement of the variability of the concentrations every 47 
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2 consecutive days) was elaborated, which allows to estimate the potential error 48 

before the interpolation is applied. 49 

Keywords 50 

Missing data; aerobiology; time-series; modelling; interpolation; environmental 51 

sampling; bioaerosols 52 

1. Introduction 53 

Environmental time series databases require continuous and reliable monitoring 54 

systems which may be affected by technical breakdowns and human factors that 55 

can interrupt the sampling process (Oteros et al., 2013). Thus, the presence of 56 

gaps in time series data is a very widespread problem in scientific research 57 

(Junger and Ponce de Leon, 2015; Navares and Aznarte, 2019; Orlandi et al., 58 

2014; Rubin, 1976; Schouten et al., 2018). This is why in many scientific 59 

disciplines, interpolation is commonly used to complete missing data or to 60 

increase its resolution (Lehmann et al., 1999; Luedeling et al., 2013; J. Oteros et 61 

al., 2013). 62 

Many different methodologies have been developed for completing missing 63 

information depending on the nature of the data and the required accuracy. Some 64 

of the most extended methods are multiple imputation-based, and multiple 65 

likelihood-based estimations (Junger and Ponce de Leon, 2015). These methods 66 

are widely implemented in most statistical softwares, in particular, in several 67 

statistical R packages (e.g. “chillR”, “MICE”, “missForest”, “rrcovNA”, “mtsdi”, 68 

“mi”). Some of them use either parametric and non-parametric statistics methods 69 

(Junger and Ponce de Leon, 2015; Luedeling et al., 2013; Stekhoven and 70 

Buhlmann, 2012; Su et al., 2011; Todorov, 2020; van Buuren and Groothuis-71 
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Oudshoorn, 2011). In general, these methods analyse the nature of the data in 72 

order to create new data that can replace the missing observations when they 73 

are randomly distributed (i.e. data are missing independently of their value or the 74 

value of other related variables) (Rubin, 1976). 75 

Aerobiology is the scientific discipline based on the study of the atmospheric 76 

bioaerosol dynamics (pollen, spore, bacteria, virus…) (Fröhlich-Nowoisky et al., 77 

2016). In this context, in case of gaps detection, it is not enough to create data 78 

which are statistically coherent with the rest of the database. Aerobiological data 79 

are sequential and missing data estimation must be linked with the previous and 80 

subsequent observations, given the stochastic nature of the bioaerosols in the 81 

atmosphere. In addition, aerobiological data follow a time series evolution that 82 

does not fit the stationary criterion, which increases the difficulty of predictions 83 

(Ritenberga et al., 2016). 84 

Additionally, aerobiological samplings are complex and sometimes pollen traps 85 

are installed in non-easily accessible locations (García-Mozo et al., 2007; Oteros 86 

et al., 2019; Picornell et al., 2019c). In the case of the Hirst-type volumetric traps, 87 

the proper operation of the traps is checked once a week, but unexpected failures 88 

such as power outages or device breakdowns may happen in between, resulting 89 

in a few days period of missing data (Navares and Aznarte, 2019). Even the 90 

development of new real-time automatic sampling devices also requires 91 

interpolation methods to complete gaps during the phase of processing the 92 

database (Oteros et al., 2020). Such missing data events are produced 93 

completely at random (Missing Completely At Random; MCAR) since they are 94 

not conditioned, a priori, by any other variable or by their concentrations values 95 

(Junger and Ponce de Leon, 2015). In some cases, the gaps may may not 96 
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hamper proper data analysis, but in other cases it can seriously affect the 97 

establishment of the principal dates of the main pollen season (MPS) or the main 98 

spore season (MSS) (Navares and Aznarte, 2017; Picornell et al., 2019a). 99 

Alternatively, missing concentration values might be considered as 0 pollen 100 

grains or spores/m3 of air for most MPS/MSS definitions, which in many cases 101 

would produce more errors than estimated data. 102 

The ideal method to complete missing concentration data in aerobiological 103 

databases, in terms of usability, should be independent of other variables and 104 

directly applicable. Linear interpolation is the most commonly used method to 105 

complete missing data, but its use is not so extended in Aerobiology as in other 106 

disciplines (Belmonte et al., 1999; Gabarra et al., 2002; Navares and Aznarte, 107 

2019, 2017; Picornell et al., 2019a; Skjøth et al., 2016). Other methods are rarely 108 

applied (e.g. moving mean interpolation or interpolation by using data of nearby 109 

location) and their accuracy have never been measured (Jesús Rojo et al., 2019; 110 

Skjøth et al., 2016). 111 

For all the aforementioned, the main aim of this study was to comparatively 112 

evaluate different methods which allow to interpolate aerobiological data, as well 113 

as to check their effectiveness and accuracy depending on the circumstances 114 

based on real life observation data. 115 

2. Material and methods 116 

To carry out this study, the databases of 6 aerobiological stations, situated in 117 

different localities of the Iberian Peninsula, have been used: Cordoba, 118 

Hornachuelos Natural Park, Malaga, Ronda, Sierra de las Nieves Natural Park, 119 

and Toledo (Fig. 1). The altitudinal range of the sampling stations varied from 58 120 



6 
 

to 1073 m a.s.l., with an average annual total precipitation between 382 mm and 121 

996 mm, and an annual mean temperature of between 11.9 ºC and 18.4 ºC (Table 122 

1). All the sampling stations are within the Mediterranean macroclimate (Rivas-123 

Martínez et al., 2017). 124 

 125 

Fig. 1. Map of the pollen and spores sampling stations used in this study. Spatial 126 

information obtained from REDIAM (Junta de Andalucía, 2011). NP: Natural 127 

Park.  128 
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Table 1. Climatic parameters, sampling years and coordinates of the sampling 129 

sites included in this study. Data extracted from García-Mozo et al., 2006; 130 

Hernández-Ceballos et al., 2015; Picornell et al., 2020, 2019b. 131 

Location 

Annual 

total 

rainfall 

(mm) 

Annual average 

temperature (ºC) 

Altitude 

(m a.s.l.) 
Coordinates 

Years of 

sampling 

Cordoba 621 17.8 138 37º54' N 4º43' W 2006-2018 

Hornachuelos 

NP 
700 16.8 225 38°4' N 5°24' W 1998-2019 

Malaga 540 18.4 58 36º42' N 4º28' W 1991-2019 

Ronda 681 16.4 768 36º44' N 5º10' W 2017-2019 

Sierra de las 

Nieves NP 
996 11.9 1073 36º39' N 5º5' W 2018-2019 

Toledo 342 15.8 450 39º51' N 4º2' W 2003-2019 

NP: Natural Park.  132 

2.1. Pollen and spore data 133 

Airborne pollen and fungal spores were collected by means of 6 Hirst-type 134 

volumetric traps, one per location (Hirst, 1952). The air flow was adjusted in all of 135 

them to 10 l/min. The aerobiological samples obtained were processed and 136 

analysed following the recommendations of both the Spanish Aerobiology 137 

Network (REA) (Galán et al., 2007) and the European Aerobiology Society (EAS) 138 

(Galán et al., 2014). More than the 10% surface of each daily sample were 139 

analysed for pollen identification and counted by light microscopy at a 140 

magnification of 400X. In the case of Alternaria spores, at least the 5% of each 141 

daily sample were analysed at the same magnification (Galán et al., 2021). Pollen 142 

and spore concentrations were expressed as pollen grains/m3 of air and 143 
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spores/m3 of air, respectively, according to the international recommendations 144 

(Galán et al., 2017, 2014). 145 

Daily pollen concentrations of Amaranthaceae, Cupressaceae, Olea, Pinus, 146 

Plantago, Platanus, Poaceae, Quercus, and Urticaceae were used to test the 147 

accuracy of the interpolation methods at all sampling stations, while Arecaceae 148 

and Casuarina pollen concentrations only were used in Malaga, Ronda, and 149 

Sierra de las Nieves, due to its scarcity in the atmosphere of the other localities. 150 

Regarding fungal spores, Alternaria concentrations registered in Cordoba, 151 

Malaga, Ronda, Sierra de las Nieves, and Toledo were also included in the study. 152 

For each pollen/spore type and year, the main pollen/spore season was 153 

calculated, this being defined as the period between the first day of the year in 154 

which the 5% of the annual pollen/spore integral is reached and the first day in 155 

which the 95% annual is accumulated (Nilsson and Persson, 1981). In the case 156 

of Cupressaceae and Alternaria two different pollen/spore curves were detected 157 

within a year in all sampling sites. Therefore, each curve was studied separately 158 

by dividing the year in two periods: January-July (winter Cupressaceae and 159 

spring Alternaria) and August-December (autumn Cupressaceae and Alternaria). 160 

Since Urticaceae pollen type was abundantly detected during the whole year, the 161 

start and end dates of the MPS were defined by adjusting the cumulative pollen 162 

concentrations to a logistic curve and selecting the dates in which the fourth 163 

derivative of the logistic curve crossed the x-axis (Cunha et al., 2015; Ribeiro et 164 

al., 2007). The MPS/MSS were calculated with the “AeRobiology” R package 165 

(Jesús Rojo et al., 2019). The optimal definition method was applied in each case. 166 

The defined seasons, independently of the method applied, helped to categorize 167 

the time series into different periods in order to analyse any effect of the seasonal 168 
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stages on the missing data estimation. Therefore, the method used to define the 169 

pollen seasons was not a crucial point in this study, and the results are not 170 

affected by them. 171 

2.2. Interpolation methods tested 172 

For this study, the different interpolation methods integrated in the “AeRobiology” 173 

R package were tested, i.e. linear interpolation, moving mean interpolation, spline 174 

interpolation, interpolation by using time series analysis, and interpolation by 175 

using data from nearby locations (Jesús Rojo et al., 2019). In all cases, 176 

calculations are based on the daily mean pollen/spore concentrations. 177 

2.2.1. Linear interpolation 178 

A linear regression is calculated by taking the first data previous and subsequent 179 

to the gap (i.e., first day before and after the gap), so, the missing data are 180 

estimated by using the regression equation (Fig. 2). 181 

2.2.2. Moving mean interpolation 182 

Each missing data is replaced by the mean value of a certain number of data 183 

placed on both sides of the gap. The number of days took for calculating the 184 

mean is the double of the gap size, and it is centred in the missing value (Fig. 2). 185 

2.2.3. Spline interpolation 186 

A spline regression is calculated by taking the first 3 data on both sides of the 187 

gap. Then, the missing data are estimated by using the regression equation (Fig. 188 

2). 189 

2.2.4. Interpolation by using temporal series analysis 190 
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For each pollen/spore type, the seasonality is calculated by taking all the daily 191 

data available for several years by performing a seasonal trend decomposition 192 

based on LOESS (Cleveland et al., 1990). Then, a linear regression is calculated 193 

between the pollen/spore curve of the year in which there are missing data and 194 

the seasonality curve in order to regulate the curve intensity based on the known 195 

data of the target pollen/spore season (Fig. 2). Missing data are estimated by 196 

using the regression equation. 197 

2.2.5. Interpolation with data from nearby locations 198 

In this case, the database of a nearby sampling station with complete data for the 199 

missing period is used to complete the gaps. For the year in which the loss of 200 

data occurred, a linear regression is calculated between the pollen/spore curve 201 

of the nearby locality (independent variable), and the pollen/spore curve of the 202 

target locality (dependent variable). If the regression is significant (p-value ≤ 0.05) 203 

and the regression coefficient is higher than 0.6, the data from the nearby location 204 

are transformed by applying the regression equation, and the missing data are 205 

replaced by the calculated values (Fig. 2). Regression coefficients under 0.6 have 206 

not been considered high enough to reflect a direct relationship between the 207 

concentration values of both sampling locations. In this method, it is possible to 208 

include more than one nearby location simultaneously. In such cases, the data of 209 

each nearby sampling station is included as an independent variable in a multiple 210 

linear regression and the missing data (dependant variable) is calculated by 211 

applying the regression equation. 212 

This method was tested in Cordoba by using Hornachuelos National Park as 213 

nearby sampling station, as well as in Ronda by using Malaga, and Sierra de las 214 

Nieves databases as nearby localities, both individually and simultaneously. 215 
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 216 

Fig. 2. Graphical examples to visualise the application of the different methods 217 

of data interpolation applied in this study. Example elaborated with Olea pollen 218 

data in Ronda during 2018. 219 

2.3. Relative error calculation 220 

To check the effectiveness of each interpolation method, some observation data 221 

were removed from the original databases of each sampling site in order to create 222 

artificial gaps. After that, the data missed were interpolated by the methods 223 

explained above and the estimated data were compared with those removed.  224 

To avoid bias in removing the original data, an algorithm that performs random 225 

cuts in the data series was developed. This algorithm made random cuts in 226 

different periods of the pollen seasons for the different pollen/spore types, being 227 

these periods: pre-season, pre-peak, peak, post-peak and post-season. The pre- 228 

and post-season periods are those outside the MPS/MSS. The peak cut was 229 
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obtained by centring the peak day in the centre of the removed data. Cuts of 3, 230 

5, 7 and 10 consecutive days were tested. 231 

Relative errors (RE) were calculated by means of the formula according to 232 

equation 1. In such of the mathematical formula, the error values range between 233 

0 and 2. Cases whose observed concentrations were zero pollen grains or 234 

spores/m3 caused mathematical indeterminacy when the estimated value was 235 

zero too (0/0), and relative errors of 2 when the estimated value was non-zero. 236 

Therefore, they were excluded since these concentrations were not frequent and 237 

they have scarce relevance. 238 

(1) 239 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  
|𝑒 − 𝑜|

|𝑒| + |𝑜|
2

 𝑖𝑓 𝑜 ≠ 0 240 

where e is the estimated pollen/spore concentration, and o the observed 241 

concentration. 242 

Besides this, estimated and observed pollen/spore concentrations were classified 243 

into the Spanish Aerobiology Network pollen classes (nil, low, moderate and high) 244 

(Galán et al., 2007), but nil class was modified to concentrations ≤ 1 pollen grain 245 

or spore/m3. Due to there are no stablished classes for Alternaria spores, the 246 

thresholds for the moderate and high categories were set in 30 and 50 spores/m3 247 

respectively, according to the most frequent concentrations detected in the 248 

sampling sites. After classifying the observed and estimated pollen/spore 249 

concentrations, the percentage of correct classification, i.e. the success rate 250 

(observed category = estimated category), was calculated by means of equation 251 
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2, in which, observed concentrations of 0 pollen grains or spores/m3 were not 252 

excluded since they do not induce mathematical artefacts in the formula. 253 

(2) 254 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =  
𝑁º 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑁º 𝑡𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
∗ 100 255 

Differences in the relative errors and in the success rates were tested with 256 

pairwise Mann-Whitney-Wilcoxon tests with Bonferroni post-hoc corrections 257 

since data did not fit a normal distribution according to Kolmogorov-Smirnov tests 258 

with Lilliefors corrections (α=0.05). 259 

2.4. Variation Index of each pollen/spore type 260 

The same pollen/spore type can show different curve profiles in different locations 261 

depending on the abundance of the emission sources, wind dynamics, climate, 262 

meteorological conditions, and phenology of the species present in the territory 263 

(Grinn-Gofroń and Rapiejko, 2009; Picornell et al., 2019b; Velasco-Jiménez et 264 

al., 2013). Therefore, results of a certain pollen/spore type may not be directly 265 

comparable among sampling locations. Moreover, interpolation success may be 266 

strongly related with the curve shape and the variation coefficients in the 267 

concentrations of consecutive days (noise). In order to characterise the daily 268 

variations of a given pollen/spore type in the different sampling stations, we 269 

developed the so defined “Variation Index” (VIn). It consisted on calculating the 270 

average of the variation coefficients (CV, equation 3) of every two consecutive 271 

days for the main pollen/spore season (equation 4). The average VIn is then 272 

calculated for the years included in the study. This index measures the average 273 

variations during consecutive days that a certain pollen/spore type shows at a 274 
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certain locality (i.e. the more variations in the concentrations among consecutive 275 

days, the highest VIn is obtained). 276 

(3) 277 

𝐶𝑉 =  
𝜎

𝑋
 278 

where CV is the coefficient of variation, σ the standard deviation and X the 279 

average. 280 

(4) 281 

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =  
∑ 𝐶𝑉𝑖

𝑛
𝑖=1

𝑛
 282 

where CV is the coefficient of variation, and n the number of days within the main 283 

pollen/spore season. 284 

To check if there is any relationship between the VIn of a certain pollen/spore 285 

type and the errors obtained when interpolating, a linear regression was 286 

calculated between these two variables. 287 

3. Results and discussion 288 

3.1. Relative errors and Variation Index 289 

Once gaps of 3, 5, 7 and 10 days were artificially created in the data series of 290 

different pollen/spore types, years and localities, and the gaps filled with the 291 

estimated data, the results obtained were analised by comparing them with the 292 

observed data. In general, regarding the different interpolation methods, the one 293 

that obtained the lowest relative error was the moving mean (0.77 as average), 294 

followed by the linear interpolation (0.80 as average) (Fig. 3A). Their relative 295 

errors showed significant differences between them as well as with the other 296 
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methods. These results are due to, despite its mathematical simplicity, the 297 

moving mean takes into account the curve trend and the pollen/spore 298 

concentrations immediately before and after the gaps, what provides a more 299 

accurate adjustment to the pollen/spore curve. Although abrupt changes may 300 

happen during the missing period, this interpolation method follows the general 301 

trend of the serie and, in general, it is less likely that predictions contain major 302 

errors. The linear interpolation generally takes into account the curve trend too, 303 

but in some cases it is oversimplified and the new data obtained may be affected 304 

by punctual concentrations that do not fit the general trend. 305 

The regressions with nearby locations, the spline regresions, and the regressions 306 

with nearby locations obtained significant higher relative errors according to 307 

Mann-Whitney-Wilcoxon tests (Fig. 3A). 308 

The interpolation with nearby location obtained very different relative errors 309 

depending on the nearby sampling station considered. In the case of Ronda, the 310 

regressions with Sierra de las Nieves sampling station (14 km away) obtained 311 

lower relative errors (RE=0.89 as average) than the regressions with Malaga 312 

sampling station (RE=1.03), situated 62 km away (Fig. 3A). However, when 313 

Sierra de las Nieves and Malaga databases were simultaneously taken into 314 

account, the error rates were estatistically similar to those obtained when 315 

considering only Sierra de las Nieves. These last errors were also similar to the 316 

ones obtained in the case of Cordoba when using Hornachuelos Natural Park 317 

sampling station as neighbour location, which is 64 km apart, with a RE of 0.94, 318 

as average. This interpolation method is the only one of all tested that, indirectly, 319 

takes into account variables such as meteorological conditions, the effect of the 320 

vegetation or land use. The effects of these variables are also reflected in the 321 
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pollen/spore daily concentrations of the nearby location, so they are indirectly 322 

integrated in the regression with the target location. Therefore, more accurate 323 

interpolations could be expected if the nearby locations had similar climatic 324 

conditions, vegetation and land use, which would be also reflected in the 325 

pollen/spore timing (phenology) and in the airborne pollen/spore load (intensity) 326 

(El-Moslimany, 2019; García-Mozo, 2017; Ruiz-Valenzuela and Aguilera, 2018). 327 

For these reasons, closer localities are generaly more likely to have similar 328 

concentration curves and, therefore, regressions analysis resulting more 329 

accurate than when using further away locations, as suggested in previous 330 

studies (Hjort et al., 2016; Lara et al., 2020; Navares and Aznarte, 2019). 331 

Nevertheless, it is possible that further sampling sites with similar conditions to 332 

the target station or with similar ornamental taxa in the vicinity of the pollen trap 333 

obtain lower errors than geographically closer sampling sites. Consequently, the 334 

errors obtained for the method of the nearby locations should be cautelously 335 

considered because the accuracy of the interpolation depends on the factors 336 

aforementioned. When applying this method, it would be interesting to select the 337 

nearby location by studing its similarity to the target location as proposed by 338 

Oteros et al. (2019). 339 

Usually, new aerobiological sampling sites are selected in order to cover areas 340 

with different environmental conditions than other previously settled stations, 341 

including meteorological conditions, land use and vegetal coverage. 342 

Consequently, the results of the interpolation with nearby locations, as observed 343 

in the results, are expected to produce high relative errors as average, given that 344 

the different sampling stations are installed to cover the geographical 345 

heterogeneity of a territory. 346 
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 347 

Fig. 3. Relative errors obtained by the different interpolation methods (A), periods 348 

of the year (B), pollen/spore types (C), and gap sizes (days; D) with all the 349 

available data. n: number of observations. Each box includes the interquartile 350 

range (Q1-Q3), bold lines indicate the median and white dots indicate the mean. 351 

Groups which share the same letter above have not any significant differences 352 

(α=0.05) between them according to Mann-Whitney-Wilcoxon tests with 353 

Bonferroni post-hoc corrections. Reg.: regression with; Ma-SN: Malaga and 354 

Sierra de las Nieves; SN: Sierra de las Nieves. 355 

The spline interpolation, as well as the moving mean and the linear interpolations, 356 

also takes into account the curve trend, but they produce more pronounced curve 357 

trends than the other methods as a consequence of spline approximation. This 358 

can lead to very accurate fits or to big errors in the predictions, which, in general, 359 
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gives higher errors (0.89) than the linear and moving mean interpolations (Fig. 360 

3A). 361 

The temporal series analysis is highly dependent on the extension of the historical 362 

database (number of years in this case). Therefore, if the number of years were 363 

not enough (as occurred in Ronda or in Sierra de las Nieves), the obtained 364 

seasonality curve might not be representative of the regular behaviour of a given 365 

pollen/spore type. Also, data series of uncommon years (according to phenology 366 

and flowering intensity) deviated from the standard behaviour may result in non-367 

accurate interpolations when using this method (Belda et al., 2020). In wind 368 

pollinated trees, remarkable differences between pollen seasons of consecutive 369 

years are frequent due to mast seeding cycles (Bogdziewicz et al., 2017). 370 

Additionally, when performing the linear regression between the seasonality 371 

curve and the curve of the target year, more errors are accumulated (0.94 as 372 

average relative error). 373 

Regarding the main pollen/spore season (Fig. 3B), in general, the period that 374 

obtained the lowest relative errors was the post-peak (RE average=0.78), 375 

followed by the pre-peak period (RE average=0.84). Post-peak periods usually 376 

present smoother curve shapes than the pre-peaks and the peaks periods due to 377 

these last ones are more conditioned by plant phenology and flowering intensity 378 

than the post-peaks, in which the plants progressively reduce the pollen emission 379 

intensity (Cunha et al., 2016; Kasprzyk and Walanus, 2014; Picornell et al., 380 

2019a). Therefore, as abrupt changes in the data series are less likely during the 381 

post-peaks, fewer errors are also expected in the interpolation. 382 

On the other hand, the peak-day concentration is difficult to predict, since it is 383 

usually an abrupt change caused by the interaction of both meteorological and 384 
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biological parameters which are not easily predictable. Moreover, the peak-day 385 

concentration usually varies widely from one year to another, what makes more 386 

difficult to successfully apply interpolation methods (Devadas et al., 2018; García-387 

Mozo et al., 2009; Picornell et al., 2019a; Valencia et al., 2019). Consequently, 388 

the relative errors obtained were higher than for the rest of the MPS/MSS period 389 

(RE average=0.86). 390 

Outside the MPS/MSS, pre- and post-seasonal periods obtained significant 391 

higher relative errors (0.98 and 0.90 as average respectively) (Fig. 3B). During 392 

these periods, days with null value in pollen/spore concentrations are frequent, 393 

interspersed with small rises and falls, what makes it more difficult to predict or 394 

stimate the daily values. However, these errors might not be relevant for defining 395 

the MPS/MSS unless they are located near to the start or the end dates. Given 396 

that the concentrations outside the MPS/MSS usually are very low, such errors 397 

are less relevant for allergy alerts. 398 

Gap sizes longer than 5 days obtained significantly higher relative errors (Fig. 399 

3D). In these gaps, abrupt changes or trend changes are more likely to happen 400 

than in smaller gaps, what may lead to higher errors. Accordingly to this, the 401 

lowest error rate was obtained for gaps of 3 days (0.82), but with non-significant 402 

differences with the errors for gaps of 5 days (0.83). As expected, longer gaps 403 

produced higher errors since the uncertainty increases when it comes to 404 

estimating longer periods. In fact, relative errors of 0.85 and 0.88 were obtained 405 

for gaps of 7 and 10 days respectively. However, these errors are expected to 406 

induce less changes in the MPS/MSS calculation than leaving the gaps without 407 

data, so it is still recommendable to interpolate them. 408 
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Regarding the results obtained by pollen/spore types (Fig. 3C), spring Alternaria 409 

(0.76), Amaranthaceae (0.77), Poaceae (0.77) and Urticaceae (0.77) were the 410 

pollen and spore types that obtained the lowest relative errors, as average. In 411 

general, these pollen and spore types are integrated by several species that, 412 

usually, have wide distribution areas. These pollen/spore types are detected 413 

during a relatively long period of the year and it probably makes their seasonal 414 

trends be smoother than the other pollen types such as Arecaceae (in which the 415 

highest relative errors were obtained, RE=1.10), Casuarina (0.98) or Platanus 416 

(0.83). Other pollen types, such as Cupressaceae, Pinus, Quercus, and Olea, 417 

have several concentration peaks within their MPS, which may correspond to the 418 

flowering of the different species or varieties that integrate the pollen types. These 419 

peaks are difficult to predict, and it may increase the relative errors obtained. For 420 

the same reason, autumn Alternaria obtained higher relative errors than spring 421 

Alternaria because autumn MSS is usually shorter and contains more 422 

pronounced peaks. 423 

Despite the pollen type has been considered, it is more interesting to consider 424 

the behaviour of the pollen curve in general, which have been characterized in 425 

this case by the Variation Index (VIn, see methods for the definition). The same 426 

pollen/spore type showed different relative errors at different sampling locations 427 

(data not shown). Therefore, it would be pointless to establish the average 428 

relative error by pollen/spore type if it is going to vary when considering a new 429 

sampling site. As observed in Fig. 4, the more variations during consecutive days 430 

(higher VIn), the more relative errors are obtained during interpolation, a linear 431 

and direct relationship existing between the VIn and the relative errors. So, by 432 

means of the regression equation, included in Fig. 5, it is possible to estimate the 433 
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average error rate when interpolating values of a pollen/spore type by calculating 434 

the VIn. This error estimation is independent of the pollen/spore type, and only 435 

relies in the behaviour of its daily concentration curve. Furthermore, this 436 

regression equation has been elaborated with pollen and spore data of 6 437 

sampling sites located at different environmental conditions and so, it can be used 438 

as a calibration curve for estimating the errors at new locations. Anyway, we 439 

recommend taking interpolation results with great caution when the VIn is higher 440 

than 0.75, since relative errors greater than 1 are expected, as average, above 441 

this value. 442 

 443 
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Fig. 4. Linear regression between the Variation Index and the relative error of the 444 

different pollen/spore type in the different sampling localities during the 445 

MPS/MSS. The grey area marks the 95% confidence interval. 446 

Additionally, in Fig. 5 we have represented, separately, the regression lines 447 

between the Variation Indexes and the relative errors for each interpolation 448 

method. It would allow to roughly estimate the average relative error that this 449 

interpolation method would produce for a given pollen/spore type. The methods 450 

that obtained the highest coefficient of regression were the temporal series, linear 451 

and spline interpolation. The regression with nearby location is not statistically 452 

significant since the relative errors obtained depend on the similarity between 453 

sampling sites, and not on the VIn of each pollen/spore type. 454 

According to the obtained results, some interpolation methods, such as temporal 455 

series and linear interpolations, are more sensitive to pollen/spore types with high 456 

variations in their concentrations during consecutive days than the others (Fig. 457 

5). This can be observed in the regression equations slopes that, when 458 

significant, are higher than in the other methods. Linear interpolation may obtain 459 

lower relative errors than moving mean interpolation if the pollen/spore type had 460 

a low VIn, but the errors would be higher if the pollen type presented a higher 461 

VIn. In the case of the interpolation with data from nearby location, the points did 462 

not fit a linear regression (p-value>0.05). It can be explained, as commented 463 

above, because the errors obtained during the interpolation are related to the 464 

similarity of both sampling locations, rather than to the characteristics of the 465 

pollen/spore type. 466 
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 467 

Fig. 5. Linear regressions between the Variation Index and the relative error of 468 

each pollen/spore type during its MPS/MSS sorted by interpolation method. The 469 

grey area marks the 95% confidence interval. RE: relative error; VIn: Variation 470 

Index. 471 

3.2. Success rates 472 

Observed and estimated pollen/spore concentrations were categorized by 473 

thresholds following the criteria of the Spanish Aerobiology Network (REA) for 474 

each pollen/spore type. Then, observed and estimated categories were 475 

compared and, in general, success rates above 60% were obtained for all the 476 

studied bioaerosols (Fig. 6). The REA and other pollen information platforms use 477 

the categories null/nil, low, moderate and high for releasing the pollen risk 478 

information to the population (Galán et al., 2007; Pérez-Badía et al., 2010). 479 
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Therefore, many of the concentrations that showed relative errors in the 480 

continuous variable, now are classified in the same risk category. 481 

The highest average success rate (i.e. lowest errors) were obtained, once more, 482 

for the linear interpolation (71%) and the moving mean interpolation (70%), 483 

without significant differences between them, but neither with the spline 484 

interpolation (68%), or the regression with Sierra de las Nieves (62%; in the case 485 

of Malaga sampling location) (Fig. 6A). The lowest average success rates (i.e. 486 

highest errors) were detected when the interpolation was performed by using the 487 

nearby location of Malaga (56% in the case of Ronda). In general, these results 488 

were similar to the obtained by calculating the relative errors (Fig. 3A) with the 489 

exception that, in this case, using levels instead daily concentrations, the spline 490 

interpolation and the regression with Sierra de las Nieves did not show significant 491 

differences when compared to linear and moving mean methods. 492 

 493 



25 
 

Fig. 6. Success rates obtained by the different interpolation methods (A), periods 494 

of the year (B), pollen/spore types (C), and gap sizes (days; D) when comparing 495 

the observed and predicted pollen/spore levels. n: number of observations. Each 496 

box includes the interquartile range (Q1-Q3), bold lines indicate the median and 497 

white dots indicate the mean. Groups which share the same letter above have 498 

not any significant differences (α=0.05) among them according to Mann-Whitney-499 

Wilcoxon tests with Bonferroni post-hoc corrections. Reg.: regression with; Ma-500 

SN: Malaga and Sierra de las Nieves Natural Park; SN: Sierra de las Nieves 501 

Natural Park; Hornachuelos: Hornachuelos Natural Park. 502 

Regarding the periods of the pollen season (Fig. 6B), those outside the MPS/MSS 503 

(i.e. pre-season and post-season) obtained the highest success rates (76 and 504 

78% respectively). As previously commented, pollen and spore concentrations 505 

during these periods are generally low and, although interpolations produced high 506 

relative errors, the variations between expected and observed concentrations 507 

imply very little changes in the pollen/spore categories. Therefore, these errors 508 

are less relevant for the allergy alert systems since they do not imply high 509 

changes in the information of the atmospheric allergenic potential. The highest 510 

success rates inside the MPS/MPS were obtained for the post-peak period (62% 511 

of success), what matches the results of the relative errors, while the lowest 512 

success rates were obtained for the peak (57%), and pre-peak (60%) periods, 513 

once again the peak being the most unpredictable period. 514 

As observed with the relative errors, there is a decrease in the average success 515 

rate (i.e. higher errors) when gaps of more than 5 days are interpolated (Fig. 6D). 516 

However, in this case, these errors did not involve any significant difference 517 

between any gap size since all average success rates were between 65 and 67%. 518 
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Finally, as can be seen in Fig. 6C, the different pollen/spore types obtained 519 

different success rates, ranged from 54 to 81%. The highest average success 520 

rate was obtained for Arecaceae (81%). This pollen type did not present 521 

significant differences with Amaranthaceae (76%) or Platanus (79%). Usually, 522 

Arecaceae pollen concentrations detected are low, as occurred also with 523 

Platanus in most sampling locations. The errors when interpolating such low 524 

concentrations may involve high relative errors but little changes in the stablished 525 

categories, a similar effect that the observed outside the MPS/MSS periods and 526 

commented above (Fig. 3B). The lowest average success rate was obtained for 527 

winter Cupressaceae (54%), followed by Quercus (59%), Olea (60%), Urticaceae 528 

(62%), and autumn Cupressaceae (65%). These pollen types are usually 529 

detected in a wider range of concentrations than in the other pollen types and so, 530 

errors during the interpolation are more likely to entail errors in the categories 531 

and, therefore, lower accuracy rates (Fig. 6C). 532 

Although the results obtained in some cases have not been the most favourables, 533 

we consider that they have been accurate enough (relative errors are generally 534 

under 0,8) for not leaving blank the gaps in an aerobiological database, without 535 

assigning a value, due to it would lead to take these concentrations as 0 pollen 536 

grains or spores/m3. This would introduce higher errors in the annual spore/pollen 537 

integral and in the MPS/MSS definition than with the interpolated data. These 538 

errors are potentially greater when a percentage definition of the MPS/MSS is 539 

applied. Moreover, when working with pollen/spore levels during these missing 540 

days, the accuracy can reach to the 70-71% of the cases (using moving mean or 541 

linear interpolation, respectively), which would allow to use these data to give 542 
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pollen/spore information to the population or to make comparisons between 543 

pollen data and allergic symptoms (Karatzas, 2009). 544 

Data quality and errors involved in the aerobiological sampling method may also 545 

play an important role in the measurement of interpolation accuracy (Oteros et 546 

al., 2015; Rojo et al., 2019). If these errors increase the variability of the 547 

bioaerosol concentrations during consecutive days, they might compromise the 548 

measurement of the interpolation accuracy (i.e., they will increase the VIn). 549 

However, this effect is not easily measurable since the data used for validating 550 

the interpolation provides from the same pollen trap and would have the same 551 

potential sampling error. In these terms, the interpolation methods that does not 552 

only rely on the data in both sides of the gap, such as the interpolation by using 553 

temporal series analysis or the interpolation with nearby locations, would be less 554 

affected by sampling errors. 555 

Apart from the methods proposed in this study, additional methods to complete 556 

missing data may be considered, such as elaborating regional forecast models 557 

based on meteorological variables and emission maps or dispersal models (Lara 558 

et al., 2019; Verstraeten et al., 2021). Nevertheless, such models should be 559 

elaborated separately for each pollen/spore type, and it might be necessary to 560 

elaborate individual models for different climate areas (García-Mozo et al., 2008). 561 

Hence, such methods would not be easy to automatize, they require individual 562 

validation, depend on the availability of meteorological data for the target location 563 

and, in most cases, a long time series of data is required to train and validate the 564 

models. 565 

Due to recent movility restrictions caused by the COVID-19 pandemic, many 566 

aerobiological samplings have been interrupted to a lesser or greater extend. This 567 
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has caused missing data for some weeks and even months in several 568 

aerobiological sampling stations. Most of these monitoring gaps occurred during 569 

spring, which affected the MPS/MSS data collection. As observed in the results, 570 

when the gap is longer than 5 consecutive days, the error rates increase 571 

significantly. For these long gaps, most of the presented interpolation methods 572 

might not be appropriate, so, it would be interesting for further studies to test the 573 

performance of time series analysis or the regressions with nearby sampling 574 

stations when a great part of the data of the MPS/MSS is missing. Nevertheless, 575 

predicting the temporality and intensity of the MPS/MSS is not an easy task, and 576 

often requires the adjustment of the models to the local conditions (Picornell et 577 

al., 2019a; Rojo et al., 2021, 2016). 578 

This work is an approach to perform interpolations in order to fill in the gaps that, 579 

due to different reasons, are generated in pollen/spore databases. Despite the 580 

most accurate method was generally the moving mean, for each specific case it 581 

would be necessary to select the method according to the particularities of each 582 

sampling station and pollen/spore type. Although this study was conducted with 583 

aerobiological databases, these results may be useful for interpolating missing 584 

data in other environmental databases. 585 

4. Conclusions 586 

• The moving mean interpolation is the method that generates the lowest 587 

relative errors, as average. This method is independent of the availability of 588 

additional data and of the length of the database, and it is also less sensible 589 

to variations in the pollen/spore concentrations during consecutive days than 590 

the other methods considered in this study. In addition, this method showed 591 
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a success rate of the 70% when assigning the risk classes that are frequently 592 

used in the allergy alert systems. 593 

• Periods with high variation indexes (VIn) make the pollen concentrations 594 

difficult to predict and, generally, cause high errors when interpolating data. 595 

Probably that be the reason why the pre-peak and peak periods present 596 

higher error rates. 597 

• The Variation Index proposed, based on the pollen/spore season behaviour, 598 

is a good indicator of the success rate. Therefore, it is advisable to take this 599 

index into consideration since it allows to estimate the relative error before 600 

applying interpolation methods. 601 

• The errors during the interpolation generally increase when gaps of more than 602 

5 days are considered. For that reason, alternative methods should be 603 

considered for interpolating longer gaps. 604 
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