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Abstract

Vinegar and related bioproducts containing acetic acid as the main component

are among the most appreciated fermented foodstuffs in numerous European and

Asian countries because of their exceptional organoleptic and bio-healthy properties.

Regarding the acetification process and obtaining of final products, there is still a lack

of knowledge on fundamental aspects, especially those related to the study of biodi-

versity and metabolism of the present microbiota. In this context, omic technologies

currently allow for the massive analysis of macromolecules and metabolites for the

identification and characterization of these microorganisms working in their natural

media without the need for isolation. This review approaches comprehensive research

on the application of omic tools for the identification of vinegar microbiota, mainly

acetic acid bacteria, with subsequent emphasis on the study of the microbial diversity,

behavior, and key molecular strategies used by the predominant groups throughout

acetification. The current omics tools are enabling both the finding of new vinegar

microbiota members and exploring underlying strategies during the elaboration pro-

cess. The species Komagataeibacter europaeus may be a model organism for present

and future research in this industry; moreover, the development of integrated meta-

omic analysis may facilitate the achievement of numerous of the proposedmilestones.

This work might provide useful guidance for the vinegar industry establishing the

first steps towards the improvement of the acetification conditions and the develop-

ment of new products with sensory and bio-healthy profiles adapted to the agri-food

market.
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1 INTRODUCTION

Vinegar is one of the most appreciated and exclusive fermented food-

stuffs in European and Asian countries. Because of their organoleptic

and bio-healthy properties, vinegar and other bio-products contain-

ing acetic acid as the main component are increasingly in demand

by consumers today. Certain advantages associated with the impact

of acetic acid on the human body may encompass the stimulation

of appetite, recuperation from exhaustion, antioxidative properties,

reduction in lipid levels in the bloodstream, and the regulation of blood

pressure. These effects may, in turn, have implications for biomark-

ers related to various diseases, including obesity, cancer, diabetes, and

hypertension.[1–3]

Among multiple factors, the activity of complex microbiota, in

which acetic acid bacteria (AAB) prevail over minor fractions of

other microorganisms, is essential for obtaining these products in

the industry.[4–6] This activity is mainly focused on the biotransfor-

mation of the ethanol from an alcoholic medium into acetic acid

occurring in specific bioreactors (acetators).[7–9] Nevertheless, despite

the well-established nature of this bioprocess from a technical stand-

point, there remain numerous fundamental aspects that are still

being researched or remain unknown. This is particularly true for

aspects related to the biodiversity, behavior, and molecular mech-

anisms employed by the existing microbiota as they adapt to the

medium during acetification. Numerous studies are currently facilitat-

ing the identification of the variety of microorganisms that conform

this microbiota, not only within the predominant AAB group, but

also other members of the Acetobacteraceae family, lactic acid bacte-

ria, among other bacteria groups, and even archaea.[10–13] Although

the key metabolism throughout acetification lies in the biotrans-

formation of substrate (ethanol) into product (acetic acid), several

metabolic pathways, mainly focused on the biosynthesis of cellular

materials, energy metabolism, and membrane detoxification mech-

anisms, which are part of the microbiota molecular strategies for

survival in these aggressive media, are increasingly the target of much

research.[9,14–18]

To effectively address these research endeavors and as a viable

alternative to overcome many of the conventional challenges associ-

ated with the isolation and characterization of microbiota members,

mainly AAB, the omic technologies have emerged in the last years and

are being applied in the fermented foods area.[19,20] In this context,

omic tools address the massive analysis of the content of macro-

molecules such as genes (metagenomics), transcripts (metatranscrip-

tomics), proteins (metaproteomics), and metabolites (metabolomics)

when studying these microorganisms operating within their natural

environments.[5,12,21–23] This approach allows us to attain a precise

understanding of the processes occurring during crucial moments

and under specific conditions of acetification. It also helps over-

come numerous limitations associated with studying the richness and

biodiversity of the microbiota inhabiting selective environments like

vinegar.[8,20] The current state of omic sciences and molecular modi-

fication methods may be applied for increasing the understanding of

physiological behavior, the characterization of new strains recovered

from these complexmedia, aswell as to exploit the full potential ofAAB

for producing vinegar and other related bioproducts.[20,24]

Considering all the aforementioned, this review starts with a com-

prehensive update on the application of diverse omic tools for the

identification of vinegar microbiota, especially in the AAB area. Con-

sidering recent research, which includes a progressive increase in the

number of new organisms and strategies existing throughout aceti-

fication, this review discusses the current state of knowledge about

microbial biodiversity and keymolecular strategies used; emphasis has

been placed onKomagataeibacter europaeus as one of themain predom-

inant species in industrial production of vinegar in Europe according to

studies both their own and those of other authors. The main objective

of this research is to offer valuable insights for the vinegar indus-

try and other bioproduct sectors. Additionally, it seeks to establish

operational methodologies for enhancing acetification conditions and

the development of new products with sensory attributes and bio-

healthy characteristics tailored to meet the demands of the agri-food

market.

2 OMIC TECHNOLOGIES FOR MOLECULAR
IDENTIFICATION OF VINEGAR-PRODUCING
MICROBIOTA

The unique growth conditions and metabolic traits of the most micro-

biota members make their isolation challenging through conventional

techniques on solid media, especially when trying to replicate their

full activity outside of their natural environments.[25,26] This is par-

ticularly evident in the context of fermented foods and beverages,

such as produced vinegar within industrial bioreactors. In this setting,

the microbiota predominantly consists of AAB, which need precise

concentrations of substrate (ethanol) and product (acetic acid), a low

pH environment, and a continuous oxygen supply achieved through

mediumaeration.[27] These challenges impose limitations on the explo-

ration of microbial diversity and richness, potentially leading to the

oversight of crucial species within this microbiota that thrive in such

hostile environments.[26] Historically, the identification of AAB has

relied on several morphological, biochemical, and physiological cri-

teria. However, contemporary identification methods prioritize the

comprehensive analysis of biological macromolecules, including DNA,

RNA, proteins, and metabolites, within a cell, tissue, organism, or

population, particularly during critical time points and under spe-

cific conditions.[20,24,28] As a result, omics tools are now emerging

as a promising technology to address many of the challenges asso-

ciated with traditional methods. In this section, we will provide an

in-depth overview of the primarymolecular techniques that have been

employed over time and continue to be utilized today for the identifica-

tion and classification of AAB. These techniques take into account both

the taxonomic level and the specific macromolecule ormetabolite ana-

lyzed. For a comprehensive compilation of these tools, please refer to

Figure 1.
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F IGURE 1 Compilation of themolecular tools for identification of the vinegar microbiota members for each (meta)omic discipline
(meta(genomics), meta(transcriptomics), meta(proteomics), andmetabolomics) from initials to themost current ones.

2.1 Genomics and metagenomics

The application of molecular methods for microorganism identifica-

tion in vinegar was initiated over 25 years ago, primarily through

DNA-based methods. Initially, researchers employed assays centered

on the selective extraction of nucleic acids, including plasmid profil-

ing and DNA-DNA hybridization. Subsequently, PCR-based systems

were developed.[29] These PCR methods involved the amplification

of specific regions within the 16S rRNA gene and restriction frag-

ment length polymorphism (RFLP)-PCR analysis of the same gene,

enabling the identification of populations of microorganisms in vine-

gar at both the genus and species levels.[30,31] The use of restriction

enzymes like Taql and Rsal for digestion played a pivotal role in dis-

tinguishing between different genera of AAB. However, due to the

relatively high conservation of the 16S rRNA gene, researchers found

it necessary to turn to the 16S-23S rRNA intergenic spacer region

(ITS) for their analysis. This region exhibits a greater degree of vari-

ability compared to the functional sequences, making it more suitable

for differentiation at the species level.[32] Other PCR-based methods

have also been employed in the identification and characterization

of AAB. Firstly, researchers have amplified specific regions of other

genes, such as adhA in K. europaeus and nifH/nifD in nitrogen-fixing

AAB.[33,34] Secondly, a combination of various techniques has been

used, including enterobacterial repetitive intergenic consensus (ERIC)-

PCR, repetitive extragenic palindromic (REP)-PCR, (GTG)5-repetitive

element-PCR, quantitative real-time PCR (qPCR), nested PCR, ran-

dom amplified polymorphic DNA (RAPD)-PCR, and amplified fragment

length polymorphism (AFLP). These methods have been applied by

several researchers to identify, type, and sometimes quantify AAB

species and strains, particularly within the microbiota of wine and

vinegar.[25,30,35–38] While these techniques have been considered as

rapid methods for taxonomically categorizing AAB, achieving accu-

rate identification typically necessitates a polyphasic approach.[28] In

this context, electrophoresis-based techniques come into play by sep-

arating amplified fragments of the 16S rRNA gene based on their

mobility under denaturing conditions. Two commonly employedmeth-

ods for this purpose are denaturing gradient gel electrophoresis

(DGGE)-PCRanddenaturing high-performance liquid chromatography

(DHPLC). These techniques have been utilized to group the primary

genera of AAB involved in both traditional[39] and submerged vinegar

production.[11] Both of these approaches are valuable for monitor-

ing structural changes in fermented food microbiota. However, due to

the limited size of DNA fragments, they typically only allow identifi-

cation at the genus level. Recognizing this limitation, Andrés-Barrao

et al.[15] employed DGGE-PCR in conjunction with housekeeping gene

sequencing (dnaK, groEL, rpoB) andmulti-locus sequence typing (MLST)

to construct a comprehensive phylogenetic tree of Komagataeibac-

ter strains involved in the production of high-acid spirit vinegar. This

approach enabled a more detailed and precise characterization of

these strains.

Recently, metagenomics and high-throughput sequencing have

emerged as innovative tools that facilitate the analysis of genomic

DNA from all organisms within a microbial population.[20] These

next-generation sequencing (NGS) tools offer a wealth of informa-

tion concerning gene content and functionality, enabling researchers

to identify and categorize microbiomes, reconstruct metabolic path-

ways, and compare experimental conditions to uncover differences

in microbial composition, abundance, and functions.[40] Amplicon

metagenomics, utilizing methods like pyrosequencing and Illumina

sequencing, has been applied to identify and quantify metagenomes of

AAB in several varieties of vinegar produced via both surface[41,42] and

submerged culture.[10,11] In contrast, shotgun metagenomics employs

sequencing data to deduce potential metabolic functions encoded by

the genomes of the community members under investigation. This

process involves the assembly of sequence reads, followed by gene

prediction and even the discovery of whole genomes of VBNC (Viable
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but Not Culturable) microorganisms.[43] In the context of vinegar,

this technology was initially employed for analyzing the microbiota of

cereal vinegar, revealing the metabolic network responsible for flavor,

as depicted in Figure 1.[12] It is noteworthy thatmany of these tools are

often used in conjunction with other technologies for the analysis of

macromolecules (proteins, metabolites, etc.) to obtain comprehensive

meta-omic profiles.[10,13]

2.2 Transcriptomics and metatranscriptomics

Nowadays, transcriptomics has been obtainingmore andmore interest

from researchers being considered as the link between genomics and

proteomics, leading to the conduction of several relevant studies based

on mRNAs. One of the first assays in this field was performed by Saku-

rai, Arai, Ishii, & Igarashi[44] consisting of a microarray transcriptomic

study that analyzed the gene expression patterns of A. aceti NBRC

14818when the cellswere oxidizing ethanol. Later,Okamoto-Kainuma

& Ishikawa[45] performed an RNA-Seq transcriptomic analysis based

on acetic acid resistance mechanisms in A. pasteurianus NBRC 3283,

with special attention to the role of molecular chaperones. Yang,

Yu, Fu, & Chen[46] carried out an RNA-seq transcriptome study in

A. pasteurianus CGMCC 1.41 under acetic acid fermentation condi-

tions, proposing the 2-methyl citrate cycle as a potential acetic acid

resistance-conferring pathway. Wang, Hong, Zhang, Huang, & Guo[47]

conducted a transcriptomic study in K. europaeus CGMCC 20445

in an ethanol-oxidating medium to determine several mechanisms

against high acid stress at different stages of acetic acid fermenta-

tion. More recently, the RNA-Seq transcriptomic analysis led by Yang

et al.[22] has allowed studying gene regulation changes to find possi-

ble relationships with a high acidity level (8%–12%) in the medium,

see Figure 1. Most of these studies aimed to determine mechanisms

of resistance to acetic acid stress by the analysis of gene expression

patterns.

Targeting the actively expressed genes, metatranscriptomics

sequences the cDNA after reverse-transcription of community RNA,

revealing the active population and actively expressed genes under

specific conditions, which can be associated with ongoing variations

in the metabolome as well as the flavor and taste formation in fer-

mented foods; these are very useful tools for innovative multi-omic

approaches.[24] In this sense, this methodology has been used in

Shanxi-aged vinegar, obtained by the solid-state fermentation sys-

tem, to explore the metabolic profile of main organic acids; carbon

metabolism was the dominant pathway, as well as Acetobacter and

Lactobacillus the main microbial taxa.[48] Huang et al.[49] used a

metatranscriptomic approach in cereal vinegar, along with other omic

tools, to identify the main species in an autochthonous vinegar starter

culture (A. pasteurianus, Lactobacillus acetotolerans, L. helveticus, Aceti-

lactobacillus jinshanensis), evaluate their interaction during acetic acid

fermentation, and construct a defined starter with these organisms

to favor the start-up of the process and improve the fermentation

yield.

2.3 Proteomics and metaproteomics

The DNA residing within cells serves as the comprehensive genetic

blueprint of the entire organism. However, the cellular phenotype

becomes apparent only through the examination of proteins. Proteins

play pivotal roles in executing one or more specific functions within

cells. Due to their remarkable activity and susceptibility to environ-

mental fluctuations, the study of proteins throughout the dynamics

of fermentation has generated considerable interest.[20,50] Proteomics

involves the comprehensive examination of the complete set of pro-

teins generated by a cell or organism. This approach enables the

identification and quantification of these proteins, thereby provid-

ing a precise depiction of events unfolding during pivotal moments

and under particular conditions in a biological process.[20,24] When

dealing with complex microbiota, like AAB found in vinegar produc-

tion, metaproteomic techniques come to the forefront. Thesemethods

facilitate the exploration of the composition and functionality of

numerous proteomes originating from various species or strains, all in

a high-throughput way.[51]

The initial protein-based technique employed for the examination

of vinegarmicrobiotawas two-dimensional electrophoresis (2DE). This

method entails the separation of complex proteinmixtures by first sub-

jecting them to isoelectric focusing (IEF) and then sorting them based

on theirmolecularweight using polyacrylamide gels (SDS-PAGE).[50] In

a noteworthy study, Lasko, Schwerdel, Bailey, & Sauer[52] investigated

protein patterns in response to acetate stress in two acetate-resistant

species of Acetobacter. A few years later, researchers delved into the

proteins associatedwith the response to acetic acid inA. aceti and their

connection to the tricarboxylic acid (TCA) cycle as a strategy for its

assimilation.[53,54] While 2DE brought significant molecular insights

into enhancing vinegar production, it faced challenges regarding the

inherent lack of reproducibility between gels. To address this issue,

researchers developed differential gel electrophoresis (DIGE), which

involves labeling two samples, each with a distinct fluorescent dye

(Cy3-NHS and Cy5-NHS), before running them on the same gel. The

implementation of two-dimensional-DIGE has enabled the identifica-

tion of differentially quantified proteins within the proteome of A.

pasteurianus and the metaproteome of Komagataeibacter spp. involved

in spirit vinegar production.[15,55]

Given the labor-intensive nature of the molecular methods men-

tioned, there has been a drive to develop new approaches for the swift

identificationofbacteria.[56] Among theseapproaches,matrix-assisted

laser desorption ionization-time of flight mass spectrometry (MALDI-

TOFMS) stands out. It enables the rapid and routine identification of a

considerable volume of bacterial samples, producing a distinctivemass

spectrum comprising multiple peaks associated with high-abundance

soluble proteins. This, in turn, yields a unique protein profile for each

bacterial group, facilitating differentiation at the levels of genera,

species, and strains.[56] MALDI-TOF MS has garnered acclaim for its

expeditious and dependable capabilities in the identification of acetic

acid bacteria (AAB) involved in the industrial production of vinegar

and its role in detecting beer spoilage.[10,57,58] In recent times, there
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has been a fusion of mass spectrometry (MS) technology with liquid

chromatography (LC), giving rise to LC-MS. This analytical method is

characterized by its sensitivity, selectivity, and precision, as it involves

the physical separation and mass-based detection of proteins, pep-

tides, other macromolecules, and metabolites.[59] The incorporation

of a second mass analyzer, operating in conjunction (LC-MS/MS), gave

rise to shotgun metaproteomics technology, which has emerged as a

potent tool for the rapid identification of thousands of proteins within

a metaproteome. This is achieved by analyzing intricate mixtures of

peptides generated through proteolytic digestion, all without the need

for prior electrophoresis-based separation. Shotgun metaproteomics

offers a broader dynamic range and enhanced protein coverage, mak-

ing it a valuable approach in the field.[60] In recent years, amultitude of

studies have homed in on various modalities of this technology within

the realm of AAB. These modalities include free-label LC-MS/MS,[61]

isobaric tags for relative and absolute quantitation (iTRAQ),[18] and

the metaproteomics approach using LC-MS/MS.[5] These advance-

ments have facilitated comprehensive investigations into the entire

microbiota involved in vinegar production, see Figure 1.

2.4 Metabolomics

The production of vinegar primarily hinges on a myriad of metabolic

reactions in which the resident microbiota plays a pivotal role. This

intricate process results in the generation of various metabolites,

including sugars, sugar alcohols, amino acids, carboxylic acids, fatty

acids, and volatile compounds. This assortment of metabolites forms

a metabolomic profile that is instrumental in shaping the organolep-

tic characteristics of the final product.[21] Metabolomics is a rel-

atively recent approach frequently employed in conjunction with

(meta)genomics and/or (meta)proteomics. It aims to establish connec-

tions between various macromolecules such as genes and proteins

derived from the microorganisms present in the environment and the

corresponding metabolites they produce.[20,62] Metabolomic studies

employ two primary approaches: untargeted and targeted analyses.

In most cases, the involved instrumental techniques require the prior

separation of metabolites from the samples through chromatography.

Subsequently, themetabolites are identified and quantified usingmass

spectrometry (MS) based on their mass-to-charge (m/z) ratio.[21] For

analyzing diverse metabolomic profiles in vinegar, particularly in prod-

ucts like balsamic and cereal vinegar, several techniques have been

widely utilized, including gas chromatography-mass spectrometry

(GC-MS)[13,21]; high-performance liquid chromatography-mass spec-

trometry (HPLC-MS)[63]; capillary electrophoresis-mass spectrometry

(CE-MS)[64] and nuclear magnetic resonance (NMR) spectrometry.[65]

Among these, GC-MS is considered one of the most mature technolo-

gies inmetabolomics. It enables the simultaneous analysis and identifi-

cation of hundreds ofmetabolites, offering high-resolution capabilities

and sensitivity. This makes GC-MS an invaluable tool for generating

comprehensive metabolite profiles of fermented products like vine-

gar. Indeed, while gas chromatography-mass spectrometry (GC-MS) is

a powerful tool for metabolomic analysis, it often necessitates chem-

ical derivatization for non-volatile metabolites.[66] However, for the

extraction of volatile compounds, the use of stir bar sorptive extraction

(SBSE) with a polydimethylsiloxane (PDMS) coating has proven advan-

tageous, addressing some of the drawbacks associated with other

extraction methods, see Figure 1. SBSE offers several advantages,

including the absence of solvents, simplicity, speed, high sensitivity,

and suitable limits for the quantification and detection of volatile

compounds in vinegar.[67,68]

2.5 Databases and software for raw data analysis
in omic sciences

Once the various macromolecules or compounds originating from the

microorganisms present in vinegar have been identified and/or quan-

tified, understanding their microbial composition and behavior within

their natural environment becomes essential. To achieve this, the raw

data obtained must undergo processing using specific databases or

software tailored to the respective omic tool being employed. This step

is crucial in extracting meaningful insights from the complex data gen-

erated in omics studies.[24] The field of omic sciences continually sees

advancements in technologies that support not only the experimen-

tal procedures but also the subsequent handling of raw data. These

developments primarily focus on enhancing efficiency and accuracy.

Selecting appropriate tools for processing raw data and conduct-

ing bioinformatic analyses is crucial for the success of experimental

designswithin omic sciences. Table 1 provides a compilation of some of

the most commonly used databases and software for omic analyses in

the realm of AAB. These tools and resources play a vital role in extract-

ing valuable insights from omic data in the context of AAB research.

3 MICROBIAL BIODIVERSITY THROUGHOUT
THE ACETIFICATION PROCESS

The composition ofmicrobiota inhabiting vinegar plays a pivotal role in

shaping the organoleptic properties and overall quality of the vinegar.

Omic tools have undeniably contributed to advancing our comprehen-

sion of microbial biodiversity during the acetification process. This has

been achieved through various approaches, including metagenomics,

allowing for a more comprehensive understanding of the microbial

dynamics at play,[11,12,69,70] transcriptomics,[22,47] proteomics,[18,71,72]

metaproteomics,[5,9,15] and metabolomics.[13,73,74] These studies have

made it possible to identify a significant portion of the microorgan-

isms participating in these biotransformations. Furthermore, they have

described the behavior of thesemicroorganisms under various operat-

ing conditions and within different media. As a result, they have played

a crucial role in elucidating the essential functions and contributions of

the vinegar-makingmicrobiota.

The microbial composition of vinegar is indeed strongly influenced

by factors such as the initial inoculum, raw materials used, and the

production system employed.[4,6] Typically, Acetobacter and Koma-

gataeibacter are the primary AAB responsible for the acetification pro-
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TABLE 1 Compilation of themain databases, software, and tools used for raw data processing derived from omic technologies andmainly
targeted to the analysis of bacterial groups.

Software/database Accession link Omic technology Description Reference

BLAST https://blast.ncbi.nlm.nih.gov/Blast.

cgi

(Meta)genomics and

(meta)proteomics

Comparison of nucleotide or

protein sequences to

sequence databases

[104]

Quimee2 https://qiime2.org/ (Meta)genomics Interactive visualization and

treatment of metagenomic

(amplicon sequencing) data

[105]

LPSN https://lpsn.dsmz.de/ (Meta)genomics Taxonomic classification of

prokaryotic microorganisms

[106]

UniProt https://www.uniprot.org/blast/ (Meta)proteomics Freely accessible database of

protein sequences and

functional information. GO

Term analysis

[107]

MaxQuant https://www.maxquant.org/ (Meta)proteomics Quantitative proteomics for

analysis of high-resolution

MS data

[108]

Perseus https://maxquant.net/perseus/ (Meta)proteomics Interpreting protein

quantification, interaction,

and post-translational

modification data

[109]

STRING https://string-db.org/ Proteomics Protein-protein interactions,

both physical and functional

associations

[110]

KEGG https://www.genome.jp/kegg/ Genomics Collection of genome

databases, enzymatic

pathways, and biological

chemicals

[111]

BioCyc https://biocyc.org/ Genomics and proteomics Collection of genome

databases, metabolic

pathways, and biological

chemicals. Genomes and

proteomes analyses

[112]

MetaboAnalyst https://www.metaboanalyst.ca/ Metabolomics and

multi-omics

Metabolomic data analysis (MS

spectra processing, statistical

and functional analysis) and

other omic analysis

[113]

RStudio https://www.rstudio.com/ Multi-omics Raw data analysis through

programming. Bioinformatics

GenBank https://www.ncbi.nlm.nih.gov/

genbank/

Proteomics Proteomics database with

annotated collection of all

available nucleotide

sequences and their protein

transitions

[114]

Reactome https://reactome.org/ Multi-omics Database for molecular details

(signal transduction,

transport, DNA replication,

metabolism, and other

cellular processes)

[115]

CellML https://www.cellml.org/ Transcriptomics, proteomics,

andmetabolomics

Open-source language for

biological cellular models

[116]

Escher https://escher.github.io/#/ Multi-omics Software for visualization and

design of biological pathways

and genome-scale models

[117]
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cess due to their high oxidative capabilities, which enable them to effi-

ciently convert ethanol into acetic acid.However, it is important tonote

that theremay also be smaller fractions of othermicroorganisms coex-

isting alongside these well-adapted AAB strains.[8,10,69] Species within

the Acetobacter genus typically become impaired when the acetic acid

concentration reaches a range of 7%–8% (w/v), with a maximum toler-

ance level of around 9%–10% (w/v). Consequently, they are commonly

found in traditional vinegar-making processes, as well as in the early

stages of vinegar production using submerged culture methods or in

the case of low-acid vinegar varieties such as cider vinegar [4.0%–

9.0% (w/v)] andwine vinegar [4.5%–10% (w/v)]. Among theAcetobacter

species, A. pasteurianus is often the most prevalent.[8,71] Nevertheless,

A. aceti, A. malorum, and A. pomorum have also been identified in some

of the aforementioned vinegar types, as indicated in Table 2.[39,57] In

the case of low-acid vinegar, themicrobiota often includesmicroorgan-

isms beyond AAB. This includes various genera of lactic acid bacteria,

such as Lactobacillus, Lacticaseibacillus, Lactiplantibacillus, Leuconostoc,

Oenococcus, Pediococcus, and Weissella, among others.[11,13,75] Addi-

tionally, small fractions of archaea and other microorganisms may also

be present in themicrobiota of low-acid vinegar.[12]

Species within the Komagataeibacter genus, many of which were

formerly classified under Gluconacetobacter, exhibit a remarkable abil-

ity to withstand acetic acid concentrations ranging from 15%–20%

(w/v).[76] These species are highly prevalent in submerged cultures,

including the production of spirit vinegar and the later stages of

most white and red wine vinegar.[5,8,15,25] Furthermore, due to their

tolerance to lower acidity levels, typically in the range of 7%–9%

(w/v), several strains of Komagataeibacter have been observed to con-

tribute to the acetification of cider, various fruit vinegars, and even

traditional vinegars.[11,25,77] Among the Komagataeibacter species, K.

europaeus has been recognized as a key AAB for industrial vinegar pro-

duction due to its specific growth requirements.[78,79] However, it is

important to note that other Gluconacetobacter species (such as Ga.

entanii) and additional Komagataeibacter species (including K. hansenii,

K. intermedius, K. medellinensis, K. oboediens, K. rhaeticus, and K. xyli-

nus) may also be present in various varieties of vinegar, as indicated in

Table 2.[11,25,29,70,80]

The biodiversity ofmicrobiota tends to decline as the concentration

of acetic acid in the medium increases, particularly under controlled

bioreactor operating conditions. These conditions render the media

even more selective, as only a few species can thrive and adapt.[8,38]

Nevertheless, recent studies have shed light on the presence of a

minority fraction of microorganisms that attempt to coexist alongside

the better-adapted species. These less-adapted microorganisms con-

tribute to the stability of the overall microbial community, showcasing

the complex interplay within these environments.[10,11,69]

4 KEY MOLECULAR STRATEGIES
THROUGHOUT THE ACETIFICATION PROCESS

The behavior of microorganisms involved in the industrial vinegar

production process can be significantly influenced by various factors,

including the chemical properties of the raw materials, the production

system, and the operating conditions.[4,6] While the primarymetabolic

process in this complex microbiota is the incomplete oxidation of

ethanol into acetic acid, there exist numerous other molecular strate-

gies at both the cytoplasmic and membrane levels that enable the

adaptation and survival of communitymembers in response to the con-

ditions imposed by the medium. This intricate interplay of metabolic

pathways and adaptive mechanisms contributes to the resilience and

stability of the microbial community in vinegar production.[18,69,81]

Certainly, the incomplete oxidation reaction is a fundamental aspect

of the assimilative metabolism of AAB in the context of vinegar pro-

duction. This section aims to provide a comprehensive compilation

of the primary processes and pathways associated with the central

metabolism of acetic acid. These metabolic strategies are employed

by the microbiota to ensure their survival and success in the vinegar

production process, as illustrated in Figure 2. The analysis of these

strategies, some of them partially or completely unknown, have been

approachedmainly from an omic perspective.

4.1 Strategies on the cytoplasm: Biosynthetic and
stress-related processes

Acetic acid bacteria are available to produce a variety of macro-

molecules (proteins, nucleic acids, and lipids) andmetabolites (alcohols,

sugar alcohols, esters, amino acids, and other aromatic compounds)

throughout acetification.[13,82] Ammonium serves as a pivotal nitro-

gen source essential for various biosynthetic processes within AAB.

These processes encompass the synthesis of amino acids, proteins,

nucleotides, and volatile compounds. Amino acids, in particular, are

generated through the utilization of nitrogen sources such as L-

glutamine and L-glutamate, both of which are self-regulated by the

cell tomeet its specific requirements.[17,61] AAB possess a noteworthy

capability for nitrogen recovery, allowing them to continuously convert

nitrogen sources like proteins, nucleic acids, and apoptotic cells into

ammonium and amino acids. This capacity enables AAB to replace any

losses in cell materials that may occur during the submerged acetifi-

cation process. In essence, AAB efficiently recycle nitrogen resources

to sustain their growth and metabolic activities throughout vinegar

production.[9,83,84] The deamination process, a well-established strat-

egy in various bacterial groups, involves the conversion of L-glutamine

into L-glutamate catalyzed by a glutaminase enzyme (such as YbaS).

This enzymatic reaction results in the release of gaseous ammonia

(NH3). Consequently, this process contributes to an increase in the

content of acid products, including protons (H+) and ammonium ions

(NH4
+), toward the end of the acetification process. The deamina-

tion of L-glutamine to L-glutamate and the subsequent release of

ammonia play a role in shaping the chemical composition of the final

vinegar product.[85] Indeed, researchers have explored this strategy

within vinegar microbiota, with a particular emphasis on acetolactate

synthase (Als), a crucial enzyme involved in the synthesis of branched-

chain amino acids (BCAA) from pyruvate. Als can play a significant role

in providing ammonia (NH3) and energy to counteract the increase in
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F IGURE 2 Mainmetabolic pathways performed by vinegar-producingmicrobiota under high acetic acid concentration conditions. The
molecular strategies are included both at the cell membrane level (proteins in blue color): ADH-PQQ, alcohol dehydrogenase PQQ-dependent;
ALDH, membrane-bound aldehyde dehydrogenase; UB, ubiquinone; TO, terminal oxidase; AatA, putative ABC transporter; FabD/G, acyl-carrier
transacylase; Des, fatty acid dehydrogenase; Cfa, cyclopropane fatty acid synthase; Omp, outer membrane family protein; OsmC, osmotically
inducible protein C; and at the cytoplasm level (proteins in orange color): ADH-NAD, alcohol dehydrogenase NAD-dependent; ALDH-NADP,
aldehyde dehydrogenase NADP-dependent; Acs, acetyl-CoA synthase; AarA, citrate synthase; AcnA, aconitate hydratase; Icd, NAD+ isocitrate
dehydrogenase; SucAB, α-ketoglutarate dehydrogenase; SucCD, succinyl-CoA synthetase; AarC, succinyl-CoA transferase; SdhA, succinate
dehydrogenase; FumA/C, fumarate hydratase; Mqo, malate dehydrogenase; Pdh, pyruvate dehydrogenase; Als, acetolactate synthase; YbaS,
glutaminase S; GroESL, heat shock proteins; DnaKJ/GrpE/ClpB, molecular chaperonin proteins; RRF, ribosome recycling factor; HPF, hibernation
promoting factor; KatE, catalase; SodB, superoxide dismutase; FdxA, ferredoxin; GrxC, glutaredoxin; Bfr, bacterioferritin. Next to each protein, it is
shown if is normally upregulated (green arrow) or downregulated (red arrow) based on studies to date. AcH, acetic acid; BCAA, brain-chain amino
acids; NH3, gaseous ammonia; NH4, ammonium; PC, phosphatidylcholine; THBH, tetrahydroxybacteriohopane; ROS, reactive oxygen species.
Created with BioRender.com.

final acid products. By doing so, it helps maintain the balance of intra-

cellular pH. The intricate metabolic pathways and enzymes involved

in these processes are essential for the overall physiology and sur-

vival of the microbiota during vinegar production, as illustrated in

Figure 2.[9,15,61]

During acetification, the biosynthesis of proteins represents one

of the most prominent metabolic pathways within AAB. However,

as acetic acid concentration increases in the later stages of acetifi-

cation, certain proteins, including ribosomal proteins responsible for

ensuring accurate translation processes, often experience a decrease

in their activity.[86] This negative effect of increasing acidity on ribo-

some integrity and protein biosynthesis has been documented in

various proteomic and transcriptomic studies.[18,47,55] Interestingly,

under high-acidity conditions, the activity of proteins that regulate

translation by recycling and inactivating ribosomes, such as ribosome

recycling factor (RRF) and hibernation promoting factor (HPF), may

actually increase. This adaptive response allows themicrobiota toman-

age the challenges posed by elevated acidity during the later stages of

acetification. Indeed, stress-related proteins, including heat shock pro-

teins such as 60GroES and10GroEL, alongwithmolecular chaperones

likeDnaJ,DnaK,GrpE, andClpB, havebeen recognized for their protec-

tive roles in preventing protein denaturation and facilitating refolding

under stress conditions.[87] Studies conducted with A. pasteurianus

have shed light on the up-regulation of these stress-related proteins

whenacidity levels increase. This suggests a potential regulatorymech-

anism for the formation and folding of proteins as a molecular strategy
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to counteract the stress induced by elevated acetic acid levels. As illus-

trated in Figure 2, thismolecular response appears to play a crucial role

in helping AAB adapt and survive under challenging conditions in the

later stages of acetification.[9,18,55]

During submerged vinegar fermentation, especially in semi-

continuous systems widely used in the industry, the microbiota

undergoes frequent and abrupt changes in the volume of the medium,

substrate concentration, and product concentration. These fluctua-

tions trigger constant biotransformations. Oxidation reactions, which

occur under continuous aeration conditions, can lead to the generation

of various toxic compounds and reactive oxygen species (ROS) within

the cytoplasm of acetic acid bacteria (AAB) cells.[88] To cope with

these oxidative stress conditions, AAB employ several proteins and

enzymatic systems; these include catalase (KatE), superoxide dismu-

tase (SodB), ferredoxin (FdxA), glutaredoxin (GrxC), bacterioferritin

(Bfr), and numerous other oxidoreductases and cofactors such as

NADH/NAD+ and NADPH/NADP+ . Research has shown that these

proteins are up-regulated under acetic acid stress in different AAB

species, as depicted in Figure 2.[18,89] Maintaining redox homeosta-

sis through these mechanisms is a valuable strategy and a critical

metabolic pathway for controlling submerged vinegar fermentation

effectively.

4.1.1 The tricarboxylic acid cycle (TCA)

The tricarboxylic acid (TCA) cycle was among the earliest metabolic

pathways in which enzymes were found to be associated with the

assimilation of acetic acid within acetic acid bacteria (AAB).[90] In this

process, cytoplasmic acetic acid can be completely oxidized to carbon

dioxide (CO2) and water (H2O), yielding adenosine triphosphate (ATP)

and simultaneously detoxifying the cell through a well-known overox-

idation reaction.[91,92] The enzyme acetyl-CoA synthase (Acs) plays a

critical role in this pathway. Acs catalyzes the conversion of acetate

into acetyl-CoA, facilitating its entry into the TCA cycle. Thismetabolic

adaptation is particularly relevant when the ethanol source in the

medium becomes exhausted, promoting secondary growth through

the utilization of acetic acid as an energy and carbon source.[93] Ace-

tobacter, Gluconacetobacter, and Komagataeibacter species are capable

of utilizing the tricarboxylic acid (TCA) cycle, which is a part of their

metabolic repertoire. In contrast, Gluconobacter species lack some

of the enzymes required for a functional TCA cycle, making it non-

functional in these organisms.[26,94] Studies involving proteomic and

genomic analyses have identified three specific genes (aarA, aarB, and

aarC) that are influenced by acetic acid stress, and their deletion

leads to a loss of acid resistance in A. aceti 1023.[53] Among these

genes, aarA and aarC encode citrate synthase (AarA) and succinyl-CoA

transferase (AarC), respectively. These genes represent some of the

initial determinants associated with acetic acid resistance. Interest-

ingly, AarC is produced by Acetobacter and Komagataeibacter species,

replacing succinyl-CoA synthetase (SucCD) in Acetobacter spp., which

belongs to the A. pasteurianus group. These genetic and metabolic

adaptations help AAB species withstand the challenges posed by

acetic acid stress.[95] Aconitate hydratase (AcnA), another enzyme

involved in the tricarboxylic acid (TCA) cycle, has been shown to be up-

regulated when A. aceti is grown in a medium containing 1% ethanol

(EtOH). Overexpression of acnA has been demonstrated to increase

the acetic acid resistance of the strain.[54] Furthermore, proteomic

and metaproteomic analyses of A. pasteurianus in a 4% (w/v) sub-

merged vinegar production medium and Komagataeibacter species in

a medium with over 10% (w/v) ethanol revealed the up-regulation

of various enzymes associated with the TCA cycle under high-acid

conditions. These enzymes include citrate synthase (AarA), aconi-

tate hydratase (AcnA), isocitrate dehydrogenaseNAD+ (Icd), succinate

dehydrogenase (SdhA), fumarate hydratase (FumA/C), succinyl-CoA

transferase (AarC), and several others. These up-regulated enzymes

are part of themicrobial response to copewith the challenges posed by

high-acid conditions during vinegar production.[15,55] Indeed, the tri-

carboxylic acid (TCA) cycle plays a crucial role as a metabolic strategy

for acetic acid bacteria (AAB) during submerged acetification, where

theymust adapt to continuous changes in ethanol concentration, acetic

acid concentration, and cell concentrations. The TCA cycle is instru-

mental in assimilating cytoplasmic acetic acid derived from ethanol,

providing both energy and essential biosynthetic precursors for the

microbial cells, as depicted in Figure 2. By utilizing the TCA cycle,

AAB can efficiently convert acetic acid into metabolic intermediates

that can be used for various cellular processes. This metabolic adap-

tation contributes to the inherent resistance of vinegar microbiota,

allowing them to not only survive but thrive in the challenging and

aggressive conditions of their natural environment within bioreactors

during vinegar production. The TCA cycle is a key component of their

metabolic toolkit for maintaining growth and productivity in these

conditions.[9,14,15,81]

4.2 Acetic acid resistance mechanisms on the cell
membrane

The concentration of acetic acid in the medium can induce modifica-

tions in the cell membrane morphology of vinegar microbiota. Aceto-

bacter and Komagataeibacter are two common acetic acid-producing

species in the vinegar industry, with the latter exhibiting higher acid

resistance compared to the former.[81] In the case of Acetobacter spp.,

they can be classified based on their cell surface morphology into

two types: R (rough cell surface) and S (smooth cell surface). The R

strains are associated with the formation of a pellicle polysaccharide

layer.[81] Notably, A. pasteurianusR strains have demonstrated a higher

capability for the production and tolerance of acetic acid compared

to S strains. The intracellular acetic acid content in S strains is signif-

icantly higher, being 3 or 4 times that of R strains. This suggests that

S strains exhibit a higher diffusion of acetate molecules into the cell

due to the absence of a pellicle polysaccharide layer, which functions

as a barrier.[96] In Komagataeibacter spp., there is a reported absence

of capsular polysaccharides (CPS) layers during industrial vinegar pro-

duction, which is in contrast toAcetobacter spp. The absence of theCPS

layer in Komagataeibacter allows ethanol and acetic acid to freely dif-
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fuse through the outer membrane during acetification. This absence of

a CPS layer potentially enhances the exchange ofmetabolites between

the cellular interior and the medium, thereby promoting industrial

vinegar production.[15] While CPS may not directly contribute to the

acetic acid resistance of Komagataeibacter, they likely play a role in

improving yield during vinegar production, as illustrated in Figure 2.

These structural and functional adaptations in response to acetic acid

concentrations highlight the remarkable versatility and adaptability

of vinegar microbiota in optimizing their performance under varying

environmental conditions.

The composition of the cell membrane in Komagataeibacter strains,

particularly K. europaeus, exhibits a higher content of phosphatidyl-

choline (PC) compared to Acetobacter strains, making PC the pre-

dominant phospholipid in the cell membrane. This phenomenon is

particularly pronounced in thepresenceof acetic acid in themedium, as

depicted in Figure 2. Additionally, the content of non-polar glycolipids

may increase under these conditions, potentially strengthening the

hydrophobic layer of the cell membrane.[79] Sphingolipids content can

also increase, particularly through the synthesis of dihydroceramide.

This increase in sphingolipids has been directly linked to acetic acid

tolerance and the stability of thePQQ-ADHenzyme inAcetobactermal-

orum during vinegar elaboration.[97] Certain Komagataeibacter species

may exhibit higher levels of hopanoids, specifically tetrahydroxybacte-

riohopane (THBH),which contributes to the stabilization of the cellular

membrane, particularly at high ethanol concentrations. This stabiliza-

tion has also been linked to acetic acid resistance in acetic acid bacteria

(AAB).[91] Modifications in the composition of fatty acids in the mem-

brane have also been observed, often involving a reduction in the total

lipid content due to the attenuation of the fatty acid biosynthesis path-

way. For instance, the downregulation of two effector proteins, FabD

and FabG, which are involved in the biosynthesis and elongation of

fatty acids, occurs under acetic acid stress in A. pasteurianus.[18] How-

ever, there can be variations in the strategies used among different

AAB species to adapt their membrane composition to the conditions

imposedby themedium. For example, in aK. hansenii strain under acetic

acid stress, two genes (des and cfa) involved in increasing the propor-

tion and chain length of unsaturated fatty acids were activated. These

variations reflect the diversity of strategies employed byAAB to adjust

their membrane composition to cope with changing environmental

conditions, as illustrated in Figure 2.[16]

Proteins and enzymatic complexes situated in the cell membrane

play a significant role in the molecular strategy of the vinegar-

producing microbiota. While the incomplete oxidation reaction con-

ducted by the membrane-bound alcohol dehydrogenase with pyrrolo-

quinoline quinone (ADH-PQQ) and aldehyde dehydrogenase (ALDH)

to generate acetic acid from ethanol is well-established, it’s important

to understand the activity and function of these enzymes in the pro-

cess. ADH-PQQ enzymes are responsible for oxidizing ethanol into

acetaldehyde. Throughout acetification, these enzymes are typically

found in high quantities. However, their behavior can become less

stable due to factors such as a shift in the carbon source from glu-

cose to ethanol or the growth phase in some acetic acid bacteria

(AAB) strains.[55,98] Despite this variability, ADH-PQQ remains highly

relevant in this transformation,with its activity usually beingmore pro-

nounced than that of membrane-bound ALDH. ALDH is responsible

for the subsequent conversion of acetaldehyde to acetic acid. Over-

all, these enzymatic reactions within the cell membrane are crucial for

the conversion of ethanol to acetic acid, which is the primarymetabolic

process underlying vinegar production. Understanding the dynamics

and regulation of these enzymes is essential for optimizing vinegar

fermentation processes.[47] The cytoplasmic enzymes alcohol dehy-

drogenase with NAD (ADH-NAD) and aldehyde dehydrogenase with

NADP (ALDH-NADP) play a distinct role in the conversion of cytoplas-

mic ethanol. During acetification, their activities on the cell membrane

are entirely inhibited.[8,81] The release of acetic acid from the cyto-

plasm to the periplasm is facilitated by systems of efflux pumps that

are proton motive force-dependent and ATP-binding cassette (ABC)

transporters. A putative ABC transporter in A. aceti, named AatA, has

been associated with acid resistance and acts as an efflux pump for

the release of acetic acid. This efflux mechanism helps in maintaining

a lower concentration of acetic acid within the bacterial cell, con-

tributing to the ability of the bacteria to survive and thrive in acetic

acid-rich environments during vinegar production.[54,99] Comparative

genomic analysis has shown that species of Komagataeibacter contain

a greater number of genes encoding putative ABC transporter pro-

teins compared to Acetobacter species.[100] This observation suggests

a correlation between the presence of ABC transporters and acetic

acid resistance.[81] ABC transporters are likely directly involved in

helping the cells cope with the challenges posed by acetic acid-rich

environments. The outer membrane of AAB also plays a role in cell

membrane function. Outer membrane proteins (OMPs) act as perme-

able porins for small solutes and help maintain the structural stability

of the outer membrane.[101] Some OMPs, such as OmpA, OmpH,

OmpW, and OsmC, have been implicated in balancing nutrient uptake

and resistance to the toxicity of molecular stressors, particularly in

response to high acidity in A. pasteurianus and K. europaeus. How-

ever, there are notable differences in the behavior of these proteins

and their corresponding coding genes between different AAB genera

during acetification. These variations suggest diverse strategies that

contribute to acetic acid resistance and highlight the complexity of the

molecular mechanisms involved.[9,18,47,55] These molecular strategies

at the cell membrane level are detailed in Figure 2.

5 KOMAGATAEIBACTER EUROPAEUS: A CRUCIAL
SPECIES FOR INDUSTRIAL VINEGAR PRODUCTION

Komagataeibacter europaeus, firstly observed by Sievers, Sellmer, &

Teuber in 1992[31] (formerly named Acetobacter europaeus), was sub-

sequently isolated and characterized from high-acid vinegar fermen-

tations in central Europe. This species has garnered attention as one

of the most suitable AAB for industrial vinegar production due to

its unique growth characteristics. These characteristics include a high

capability to oxidize ethanol and produce acetic acid, which is benefi-

cial for both its requirement and tolerance. K. europaeus is capable of

thriving in environments with a pH as low as 2.5 and requires a contin-
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12 of 18 ROMÁN-CAMACHO ET AL.

F IGURE 3 Metabolic strategies used by Komagataeibacter europaeus strains to impose themselves and survive on the rest of the vinegar
microbiota throughout the submerged acetification process. AcH, acetic acid; CPS, capsular polysaccharides; PC, phosphatidylcholine; ADH-PQQ,
alcohol dehydrogenase pyrroloquinoline quinone dependent; THBH, tetrahydroxybacteriohopane. Created with BioRender.com.

uous supply of oxygen for its growth.[8,31,76] These metabolic features

make K. europaeus well-suited for growth in various types of vinegars

produced via submerged culture, including wine vinegar (with ethanol

concentrations ranging from 4.5% to 10% w/v), spirit vinegar (with

ethanol concentrations ranging from 10% to 20% w/v), and even low-

acidity vinegars such as traditional balsamic vinegar and cereal vinegar

(with ethanol concentrations ranging from4%to7%w/v). Its adaptabil-

ity to a wide range of vinegar types makes it a valuable asset in vinegar

production processes.[25,26,102]

K. europaeus is often dominant in industrial vinegar production, and

ongoing research is focused on understanding the various metabolic

strategies employed by different strains of this species to achieve

dominance. Recent advances and innovative strategies used by K.

europaeus are outlined in Figure 3. K. europaeus, like other Koma-

gataeibacter species, utilizes coenzymeQ10 in its respiratory chain. The

key enzyme responsible for converting ethanol into acetic acid in this

species is ADH-PQQ (alcohol dehydrogenase with pyrroloquinoline

quinone). Notably, the enzymatic activity of ADH-PQQ in K. europaeus

cells under high acidity conditions is approximately twice that of

A. pasteurianus. This higher ADH activity provides a larger energy

pool formembrane-associated processes, including acetate/acetic acid

export systems.[8] Comparative analysis of published AAB genomes

has revealed differences in the number of gene copies of ADH-PQQ.

The Komagataeibacter genus, including K. europaeus, contains the high-

est number of encoding gene copies. For example, K. europaeus 5P3

possesses six copies of the gene, while it is absent in strains like K.

hansenii ATCC 23769 and K. medellinensis NBRC 3288. These varia-

tions in the number of ADH-PQQ genes may play a crucial role in

allowingK. europaeus to dominate high-acid acetification processes.[81]

Furthermore, K. europaeus has the potential to assimilate other carbon

sources besides ethanol. Recent studies have proposed a molecu-

lar strategy in which this species, when predominant in a microbiota

involved in submerged vinegar production using raw materials with

high sugar content, may utilize glucose from the medium before

ethanol. This strategy could provide K. europaeus with a competitive

advantage over other species that preferentially consume glucose

(see Figure 3).[9]

The modification of cellular structure and membrane composi-

tion plays a critical role in the molecular strategies employed by K.

europaeus, as illustrated in Figure 3. K. europaeus exhibits adaptabil-

ity in terms of its cellular morphology. In the absence of acetic acid,

it typically starts as short rod-shaped cells but can undergo morpho-

logical changes to become longer and thinner rods as the acidity level

in the environment increases. This change in morphology reduces the

effective area available for passive diffusion and storage of acetic acid

within the cells. As a result, K. europaeus can tolerate higher levels

of acetic acid activity.[79,81] In terms of membrane composition, K.

europaeus has been associated with an increase in lipid content in the

cell membrane, including phosphatidylcholine (PC) and tetrahydroxy-

bacteriohopane (THBH). Additionally, it lacks capsular polysaccharides

(CPS), which are present in some other acetic acid bacteria. These dif-

ferences in membrane composition serve as distinctive strategies that
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contribute to K. europaeus’s ability to dominate submerged fermenta-

tion processes.[79,91] Recently, an O-antigen polysaccharide fraction

known as Ke-PSwas isolated fromK. europaeusNBRC3261, and it may

be involved in acetic acid resistance mechanisms.[103] Furthermore,

when examining the population dynamics during submerged vinegar

production using mixed starting cultures of acetic acid bacteria (AAB),

metagenomic tools have revealed that although A. pasteurianus is ini-

tially predominant, particularly at high ethanol concentrations (ranging

from 5% to 7% v/v), K. europaeus consistently prevails as fermenta-

tion progresses.[81] This dominance shift highlights the competitive

advantage of K. europaeus in acetic acid-rich environments.[25]

In the solid-state fermentation of Chinese cereal vinegar, it has been

observed that non-abundant microbiota communities can have crucial

roles in network stability. A study conducted by Peng et al. 2021[69]

identified K. europaeus as the most co-occurring non-abundant species

with a significant role in the function and resilience of the microbial

community.When K. europaeus JNP1was bioaugmented, it was found

to modulate the composition of the microbiota and enhance biopro-

cess efficiency. This was achieved by increasing acetic acid content

and reducing the level of reducing sugars, as depicted in Figure 3.

K. europaeus exhibited the capability to confer stability to both pre-

dominant and minor abundant members of the microbiota, ultimately

enhancing the final vinegar properties.

In summary, gaining a better understanding of the molecular mech-

anisms employed by K. europaeus to adapt to its environment and

dominate themicrobiota is essential for improving fermentation condi-

tions. The characterization of suitable strains of K. europaeus holds the

potential to enhance starter cultures, resulting in final products with

improved organoleptic properties and higher quality.

6 CONCLUSIONS AND FUTURE TRENDS

In this review, a comprehensive compilation of the current omic and

meta-omic technologies and theirmultiple applications for the identifi-

cation of vinegar microbiota members, as well as key metabolic strate-

gies used, has been conducted. Indeed,with the ongoing advancements

in research and the changing landscape of the agro-alimentary market,

gaining this knowledge is undeniably vital for enhancing the acetifi-

cation process and ensuring the quality of the final products. As we

continue to uncover more about the complex microbial communities

involved, it opens up opportunities for optimizing production meth-

ods, enhancing product consistency, and even developing innovative

vinegar and bio-product variations that cater to evolving consumer

preferences. This intersection of science and industry is instrumen-

tal in meeting the demands of a dynamic market while maintaining

the tradition of vinegar production. In this sense, omic technologies

are becoming more attractive interest of researchers because they

are allowed to approach these issues with high throughput and with-

out compromising the integrity of the microbiota and properties of

the fermented product. In the case of vinegar, they are allowing to

solve many of the traditional hurdles for isolation and characterization

of microorganisms inhabiting these aggressive media. However, there

are still several limitations of the current omic analysis, such as the

limitation to detect low-abundant species, high level of technical and

biological noise, and few biological replicates normally due to the high

cost. Moreover, powerful bioinformatic methods for the integration,

visualization, and validation of meta-omic data need to be devel-

oped. Therefore, the progress in sequencing and mass spectrometry

technologies may allow the development and improvement of the cur-

rent omic sciences including (meta)genomics, (meta)transcriptomics,

(meta)proteomics and metabolomics. Studying vinegar microbes with

advanced tools can help create new, high-quality vinegars with bet-

ter taste and health benefits. It can also improve starter cultures

for vinegar production by selecting key species or strains; progress

in obtaining isolates from vinegar, their phenotypic characterization,

and biotechnological enhancement; and finding of marker genes, pro-

teins, and metabolites throughout the process. Ultimately, this review

aims to provide useful guidance for the industry of vinegar and other

related bioproducts targeted for the improvement of the elaboration

procedures and operating conditions in the coming years.
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