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Abstract 22 

This study sought to assess the feasibility of using NIR spectroscopy to predict the 23 

physico-chemical composition of summer squash during on-vine ripening, with a view 24 

to deciding on its possible use in baby food production depending on nitrate content at 25 

harvesting. NIR calibration models were developed using a set of 157 samples scanned 26 

in situ in the 1600–2400 nm region, using a portable handheld MEMS-NIR 27 

spectrophotometer working in reflectance mode. Modified partial least squares (MPLS) 28 

regression was used to interpret spectra and develop calibrations for summer squash 29 

composition. Results (r2 = 0.83; SECV = 112.44 mg kg-1) showed that NIRS technology 30 

has great potential for measuring nitrate content and also other quality parameters in 31 

intact summer squashes during on-vine ripening. In addition, suitable wavelengths for 32 

nitrate content determination were identified by x-loading weights and regression 33 

coefficients. These findings suggest that NIRS may be a valuable tool for the rapid, 34 

accurate and non-destructive measurement of nitrate content, with a view to ascertaining 35 

the suitability of individual fruits for use in the production of baby foods. 36 

 37 
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1. Introduction 40 

Over recent years, consumers have become increasingly aware of the risks 41 

involved in excessive consumption of nitrates and nitrites in water and foods. 42 

Vegetables are a major source of nitrates in the human diet, while nitrites are ingested 43 

mainly through canned foods. In response to growing public concern, the European 44 

Union passed Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting 45 

maximum levels for certain contaminants in foodstuffs; the maximum level for nitrates 46 

in processed cereal-based foods and baby foods for infants and young children was set 47 

at 200 mg NO3/kg (OJEU, 2006). 48 

Summer squash is a common ingredient in processed vegetable-based baby 49 

foods. It is rich in polysaccharides, active proteins, essential amino acids, vitamins, 50 

carotenoids and minerals, and provides a moderate amount of dietary fiber; interest in 51 

this vegetable has increased considerably in the last few years due to its nutritional 52 

properties and health benefits (Reiss et al., 2012).  53 

Nitrate levels at harvesting are a key issue, particularly if the summer squash is 54 

to be processed for the production of baby food. Toxicity occurs due to the conversion 55 

of nitrate to nitrite, which may lead to methemoglobin due to the oxidation of Fe+2 in 56 

hemoglobin. The impaired capacity of methemoglobin to deliver oxygen to tissues may 57 

lead to severe toxic effects, and may even prove fatal where methemoglobin accounts 58 

for over 70% of total hemoglobin. This occurs almost exclusively in infants and very 59 

young children, due to: lower stomach acidity (favoring the growth of bacteria able to 60 

convert nitrate to nitrite); the presence of fetal hemoglobin (which is more easily 61 

oxidized by nitrite); and lower levels of NADH-dependent methemoglobin reductase, an 62 

enzyme capable of reducing methemoglobin, which is very efficient in adults 63 

(Santamaria, 2006). In recent years, a number of studies have highlighted a possible link 64 



between nitrate exposure and childhood type 1 insulin-dependent diabetes mellitus (van 65 

Maanen et al., 2000). 66 

All this has prompted greater attention to squash quality and safety concerns; as 67 

a result, producers are increasingly anxious to provide consumers with assurances 68 

regarding the quality and provenance of this product. Nitrate accumulation in squashes 69 

depends not only on type and genetic variety, but also on a number of other factors, 70 

including temperature, sunlight, available nitrogen and growing method (Blom-71 

Zandstra, 1989). 72 

There is a clearly need for non-destructive sensors that can be used in the field to 73 

measure squash nitrate content as well as other internal quality parameters (firmness, 74 

dry matter and soluble solids content, pH and titratable acidity); on the basis of the 75 

values obtained, decisions can be taken regarding optimum harvesting times and 76 

possible industrial uses.  77 

Near-infrared spectroscopy (NIRS), in conjunction with the application of 78 

multivariate analysis strategies, is a valuable tool with great potential for the agrifood 79 

sector, ensuring rapid and reliable measurement of these parameters; over recent years, 80 

the field implementation of NIRS techniques has been helped by the development of 81 

compact, portable instruments, which may be hand-held or tractor-mounted, and can 82 

thus be readily used in the field. 83 

There are no reports in the literature regarding the use of MEMS-NIRS 84 

instruments for the pre-harvest monitoring of summer squashes with a view to 85 

establishing the optimum time for harvesting depending on their potential destination in 86 

the industry, since research to date on the use of NIRS technology for summer squash 87 

quality control has focused only on the measurement of dry matter, hue angle h* and 88 

firmness using a NIR-AOTF spectrophotometer (Barnaba et al., 2012), and on the 89 



determination of antioxidant compound content (Blanco-Díaz et al., 2014) and mineral 90 

and carotenoid content (Martínez-Valdivieso et al., (2014a, b) using a monochromator 91 

instrument to analyze lyophilized, ground product.  92 

Several authors have highlighted the viability of NIRS technology for the non-93 

destructive measurement of nitrate content in various fruits and vegetables, including 94 

Japanese radishes (Ito et al., 2003), leaf stalk of Qing gin cai (Ito and Idezawa, 2006), 95 

spinach leaves (Xue and Yang, 2009), and pineapple (Srivichien et al., 2015).  96 

This study sought to assess the feasibility of using NIR spectroscopy, with a 97 

low-cost, miniaturized, handheld, near-infrared device based on MEMS technology, for 98 

characterizing internal quality variations—particularly nitrate content—in intact 99 

summer squashes during on-vine ripening, with a view to optimizing harvesting times 100 

and enabling staggered harvesting by quality, thus allowing certain harvested squashes 101 

to be used in the production of baby foods. 102 

2. Material and methods 103 

2.1. Sampling 104 

A total of 157 summer squashes (Cucurbita pepo subsp. pepo var. Mirza), grown 105 

on an open-air plantation in the district of La Montiela, Santaella (Córdoba, Spain), 106 

were harvested between May and July 2015. 107 

2.2. Reference data 108 

Nitrate content (mg NO3 kg-1) was measured following Thompson et al., (2009), 109 

using an RQFlex reflectometer (Merck, Darmstadt, Germany).  110 

Firmness was measured as the maximum force required to penetrate the summer 111 

squashes to a puncturing depth of 10 mm using a 3-mm cylindrical tip. Summer 112 

squashes were arranged with the stem-calyx axis horizontal; the first measurement was 113 

made at a point on the equator, and the second after turning the fruit through 180º. 114 



Texture measurements were made using a Universal Instron Texturometer (Model 3343, 115 

single-column, Instron Corporation, Norwood, MA, USA), with a head speed of 0.0008 116 

m/s (50 mm/min) and a 1000 N load cell. 117 

Dry matter content was determined by desiccation at 105ºC for 24 h (AOAC, 118 

2000); final dry weight was calculated as a percentage of initial wet weight. Soluble 119 

solid content (SSC, in ºBrix) was measured as the refractometer reading for summer 120 

squash juice, using a temperature-compensated digital Abbé-type refractometer (model 121 

B, Zeiss, Oberkochen, Würt, Germany). Values for pH and titratable acidity (TA) were 122 

measured using an automatic titrator (Crison Micro TT 2050, Crison, Alella, Barcelona, 123 

Spain); TA was measured by titration with 0.1 mol L–1 NaOH to an end point of pH 8.1. 124 

Results were expressed as % citric acid. 125 

2.3. Spectral data acquisition 126 

NIR spectra of intact summer squashes were collected in reflectance mode (log 127 

1/R) using a handheld micro-electromechanical system (MEMS) instrument (Phazir 128 

2400, Polychromix, Inc., Wilmington, MA, USA).  129 

The Phazir 2400 is an integrated near-infrared handheld analyzer that incorporates 130 

all the essential components to deliver on-vine applications. The spectrophotometer 131 

scans at a non-constant interval of around 8 nm (pixel resolution 8 nm, optical 132 

resolution 12 nm), across the NIR wavelength range of 1600-2400 nm, with a scan time 133 

per sample of 3 s. Four spectral measurements were made on each summer squash 134 

whilst on the vine, at four points located 90º from each other in the equatorial region of 135 

the fruit. The four spectra were averaged to provide a mean spectrum for each fruit. 136 

2.4. Data analysis: definition of calibration and validation sets 137 

Prior to carrying out NIRS calibrations, the CENTER algorithm included in the 138 

WinISI II software package ver. 1.50 (Infrasoft International LLC, Port Matilda, PA, 139 



USA) was applied to ensure a structured population selection based solely on spectral 140 

information, for the establishment of calibration and validation sets (Shenk and 141 

Westerhaus, 1991). This algorithm performs an initial principal component analysis 142 

(PCA) to calculate the center of the population and the distance of samples (spectra) 143 

from that center in an n-dimensional space, using the Mahalanobis distance (GH); 144 

samples with a statistical value greater than 3 were considered outliers or anomalous 145 

spectra. 146 

The CENTER algorithm was applied in the spectral region 1600-2400 nm. 147 

Mathematical treatments SNV (Standard Normal Variate) and DT (De-trending) were 148 

applied for scatter correction (Barnes et al., 1989), together with the mathematical 149 

derivation treatment '1,5,5,1', where the first digit is the number of the derivative, the 150 

second is the gap over which the derivative is calculated, the third is the number of data 151 

points in a running average or smoothing, and the fourth is the second smoothing 152 

(Shenk and Westerhaus, 1995b; ISI, 2000).  153 

After elimination of outlier spectra, calibration models were initially constructed 154 

using all the samples available (training set, C1) for all parameters tested (Table 1). 155 

After analyzing the accuracy and precision of the models obtained, new models were 156 

developed for those parameters for which the best models displayed a predictive 157 

capacity sufficient at least to distinguish high, medium and low values for that 158 

parameter; later, these were externally validated. For this purpose, and having ordered 159 

the sample set by spectral distances (from smallest to greatest distance to the center), the 160 

samples forming the validation set were selected by taking one sample out of every four 161 

in the initial set, although other alternatives for the selection of this set could have been 162 

used. After this procedure, the calibration (C2) and validation (V) sets thus comprised 163 

the samples shown in Table 1. 164 



Data were subjected to chemometric treatment using the WinISI software package 165 

ver. 1.50 (ISI, 2000). 166 

2.5. Data pre-processing and calibration model construction using a linear regression 167 

strategy 168 

NIR calibration models for the prediction of quality parameters (nitrate content, 169 

firmness, dry matter, SSC, pH and TA) in intact summer squashes were initially 170 

constructed using the training set C1 (comprising all available samples) using modified 171 

partial least squares (MPLS) regression (Shenk and Westerhaus, 1995a), with 172 

subsequent cross-validation. The calibration set was partitioned into 6 groups; each 173 

group was then validated using a calibration developed on the other samples; finally, 174 

validation errors were combined to obtain a standard error of cross-validation (SECV). 175 

A number of different pre-processing combinations were evaluated for scatter 176 

correction, including SNV and DT. Additionally, a total of four derivative mathematical 177 

treatments were tested: 1,5,5,1; 2,5,5,1; 1,10,5,1 and 2,10,5,1.  178 

The statistics used to select the best equations were: the coefficient of 179 

determination for calibration (R2), the standard error of calibration (SEC), the 180 

coefficient of determination for cross calibration (r2), the standard error of cross 181 

validation (SECV) and the coefficient of variation (CV), defined as the ratio between 182 

SECV and the mean value of the reference data in the calibration set. Furthermore, the 183 

Residual Predictive Deviation (RPD) was calculated as the ratio of the standard 184 

deviation (SD) of the reference data to the SECV. This statistic, together with the CV, 185 

enables SECV to be standardized, facilitating the comparison of results obtained with 186 

sets of different means (Williams, 2001). 187 

Having analyzed the predictive capacity of the models obtained using the 188 

complete sample set (training set C1), new models were developed to predict the 189 



selected parameters using the second calibration set (C2). The best-fitting equations 190 

obtained for this new calibration set, as selected by statistical criteria, were subsequently 191 

subjected to external validation following the protocols outlined by Windham et al., 192 

(1989). 193 

3. Results and Discussion 194 

3.1. Spectral properties 195 

Mean and standard deviation spectrum for summer squash at harvesting are 196 

shown in Figure 1. 197 

In the wavelength region 1600-2400 nm, the major absorption peak at around 198 

1920-1930 nm was mainly related to water absorption, as was the peak at around 2200 199 

nm; this was to be expected, since summer squash is around 90% water (Osborne et al., 200 

1993; Williams, 2001). Osborne et al. (1993) reported peaks at around 1780 nm and 201 

2310 nm related to the first sugar-related overtone. Peaks at around 1680 nm may be 202 

linked to combination bands of proteins (Williams, 2001). 203 

3.2. Population characterization. 204 

 Calibration (C1 and C2) and validation (V) set details, i.e. number of samples, 205 

mean, range, SD, and CV for the parameters analyzed, are shown in Table 1. 206 

 It should be stressed that structured selection using only spectral information 207 

treatment algorithms such as CENTER proved adequate and useful, since the calibration 208 

and validation sets (C2 and V, respectively) displayed similar values for mean, range 209 

and standard deviation for all study parameters, and ranges for the validation set lay 210 

within the range recorded for the calibration set C2. 211 

 As Table 1 shows, the internal quality parameter displaying the greatest 212 

variability was nitrate content, with a CV of 70.37% (training set C1) and 69.42% 213 

(training set C2); CV for the validation set was 73.73%. Nitrogen fertilization was 214 



stopped halfway through harvesting, prompting a marked drop in nitrate content 215 

thereafter. The lowest variability was recorded for pH (CVcalibration = 2.69% and 2.85% 216 

for C1 and C2, respectively; CVvalidation = 2.54%) and titratable acidity (CVcalibration = 217 

11.11% and 11.25% for C1 and C2, respectively; CVvalidation = 8.89%), values for which 218 

displayed little variation over the harvesting period as a whole.  219 

3.3. Prediction of nitrate content and other internal quality parameters in summer 220 

squash on vine 221 

Results for the best models developed using training set C1 and various 222 

mathematical pretreatments are shown in Table 2. Statistical criteria were used to select 223 

the best model for each study parameter. 224 

This study sought to determine whether harvested summer squashes could be 225 

used in the production of baby foods, for which nitrate content represents a major 226 

constraint. The predictive capacity of the best model for nitrate content (r2 = 0.83; 227 

SECV = 112.44 mg NO3 kg-1) may be considered acceptable in terms of the limits 228 

recommended by Shenk and Westerhaus (1996). This result is of particular interest, in 229 

that it suggests that using a low-cost, portable NIRS instrument—suitable for use in the 230 

field—the industry can rapidly classify fruits as fit or unfit for baby food production on 231 

the basis of nitrate content. The European Union Commission Regulation (EC) No 232 

1881/2006 stipulates that summer squashes with a nitrate content of over 200 mg NO3 233 

kg-1 cannot be used for the production of foods for infants and young children, and both 234 

producers and processors urgently require a non-destructive technique for measuring 235 

nitrate content.  236 

This appears to be the first published report on the use of NIRS technology to 237 

measure nitrate content in summer squashes, although a number of authors have tested 238 

this technology in other vegetables. Ito et al. (2003) found that NIRS in conjunction 239 



with multiple linear regression enabled satisfactory determination of nitrate content in 240 

Japanese radishes, although they noted that the RMSE could be improved. Ito and 241 

Idezawa (2006) used NIRS and MLR algorithm to determine nitrate content in the leaf 242 

stalk of Qing gin cai, reporting a good match between real and Vis-NIR-calculated 243 

values for nitrate ion content for the third leaf stalk from outside and for whole nitrate 244 

ion content (0.90 and 0.76, respectively). In a 2009 study of nitrate content in spinach, 245 

Xue and Yang tested the best PLS model and PCR model in the spectral range 350-2500 246 

nm with an independent dataset, reporting good agreement between predicted and 247 

observed values, with a correlation coefficient of 0.94 for the PLS model and 0.95 for 248 

the PCR model; the RMSE of prediction was 128.2 mg kg-1 for the PLS model and 249 

120.8 mg kg-1 for the PCR model. In the only published study in fruit, Srivichien et al. 250 

(2015) measured nitrate content in pineapples by Vis-NIR spectroscopy, using a 251 

monochromator instrument; the results (RPD = 2.86; CV = 13.84%) were better than 252 

those obtained here, perhaps because the spectral range used was 600-1200 nm. 253 

The predictive capacity of the models obtained for predicting dry matter content 254 

(r2 = 0.66; SECV = 0.38% fw), total soluble solid content (r2 = 0.68; ETVC = 0.33 255 

ºBrix) and pH (r2 = 0.57; ETVC = 0.11)—parameters crucial for deciding the optimum 256 

time for harvesting and determining the shelf-life of summer squashes—enabled high, 257 

medium and low values to be distinguished (Shenk and Westerhaus, 1996). 258 

Only one published study has addressed the prediction of dry matter content in 259 

summer squashes using NIRS technology: Barnaba et al. (2012) used an AOTF-NIRS 260 

spectrophotometer for this purpose, in conjunction with PLS regression. The predictive 261 

capacity of the calibration models developed for this parameter (r2 = 0.81; SECV = 262 

0.46% fw) were similar to those obtained here. 263 



No reports have been found in the literature regarding the determination of SSC 264 

in summer squashes using NIR spectroscopy. However, Sánchez et al., (2013) measured 265 

SSC in intact mandarins using a Phazir 2400 instrument in the 1600-2400 nm spectral 266 

region, reporting results (RPD = 1.49; CV = 6.06%) very similar to those obtained in 267 

the present study. 268 

Portable MEMS-based NIRS instruments have not hitherto been used to 269 

determine pH in summer squashes, but Sánchez et al. (2013) report poorer results for 270 

pH prediction in intact mandarins (RPD = 1.11; CV = 2.59%), highlighting the fact that 271 

pH is difficult to predict if training sets are insufficiently varied. 272 

The predictive capacity of the models developed to predict firmness (r2 = 0.45; 273 

SECV = 1.46 N) and titratable acidity (r2 = 0.44; SECV = 0.01 % citric acid) enabled 274 

high and low values to be distinguished for these parameters, thus meeting the criterion 275 

recommended by Shenk and Westerhaus (1996).  276 

The results obtained for firmness underline the difficulty in correlating a 277 

destructive measurement made at a puncturing depth of 10 mm with a non-destructive 278 

measurement; as Peirs et al. (2002) have noted, NIRS light only penetrates to a useful 279 

depth of between 1 and 5 mm, depending on the wavelength, the instrument used and 280 

the maturity of the fruit tested.  281 

The predictive capacity of the models developed to predict titratable acidity 282 

reflects the fact that all summer squashes were harvested at commercial maturity, and 283 

thus displayed very uniform acidity values. González-Caballero et al. (2010) report that 284 

this parameter cannot be predicted using NIRS technology and MPLS regression if the 285 

training sets have low standard-deviation values, as was the case here. 286 

Portable MEMS-based NIRS instruments have not been used to date for the 287 

prediction of firmness in summer squashes, but Pérez-Marín et al. (2010) reported a 288 



predictive capacity for firmness in intact plums (RPD = 1.18; CV = 53.10%) slightly 289 

lower than that obtained here, using the same instrument. This highlights the difficulty 290 

of correlating measurements when using an instrument working in the 1600-2400 nm 291 

spectral region. 292 

Although there are no reports in the literature regarding the in situ measurement 293 

of titratable acidity in outdoor-grown summer squashes, Sánchez et al. (2013), studying 294 

quality measurements in on-tree mandarins using the Phazir 2400 instrument, obtained 295 

models whose predictive capacity (RPD = 1.68; CV = 11.93%) was better than that 296 

obtained here, perhaps because the training sets contained greater variability, since 297 

measurements were made throughout ripening.  298 

3.4. New calibration process and external validation 299 

Once the predictive capacity of the models using the training set C1 and cross-300 

validation had been analyzed, only those models (nitrate content, dry matter, SSC and 301 

pH) for which r2 > 0.5 were subjected to external validation. 302 

The aim was, in the first instance, to validate the best calibration models using a 303 

sample set not included in the calibration, but similar to the calibration set. Validations 304 

of the best calibration models obtained with training set C2 were performed using a set 305 

comprising 34 samples (Table 3). 306 

Models constructed for predicting nitrate content in intact summer squash using 307 

the MEMS instrument met the validation requirements in terms of r2 (r2 > 0.6), while the 308 

SEP(c), bias and slope were within confidence limits: the equation thus ensures accurate 309 

prediction, and can be applied routinely (Windham et al., 1989). As Table 3 shows, two 310 

samples in the initial validation set (nitrate content of 1,030 and 1,065 mg kg-1) were 311 

eliminated since the samples were unrepresentative of the calibration set (Fig. 2), thus 312 

hindering their correct prediction. 313 



Using the monitoring procedure, the prediction statistic values obtained for dry 314 

matter fell short of the limit recommended for routine application (r2 > 0.60). However, 315 

it should be stressed that the SEP(c) and slope values were close to confidence limits 316 

and bias was below confidence limits, suggesting that the NIRS equation for this 317 

internal parameter can be regarded as a useful preliminary trial for obtaining accurate 318 

on-vine quality predictions for intact summer squashes. Likewise, the values for bias in 319 

the models constructed for predicting SSC and pH in intact squashes using a handheld 320 

MEMS spectrophotometer lay within confidence limits, although r2, SEP(c) and slope 321 

results did not always attain recommended minimum values, indicating that the NIRS 322 

equations constructed may be considered as a first step in the fine-tuning of NIRS 323 

technology for the on-vine monitoring of internal quality parameters in summer 324 

squashes.  325 

These results highlight the importance not only of ensuring a sufficient number 326 

of samples in the calibration set, but also of guaranteeing the adequate distribution and 327 

structure of the sample set. 328 

3.5. Analysis of sensitive wavelengths for the prediction of nitrate content  329 

 The x-loading and regression coefficient plots for the best model obtained for 330 

predicting nitrate content in intact summer squash are shown in Fig. 3. These plots show 331 

the areas across the spectral range in which variance has influenced the computing of 332 

the model to a greater or lesser degree, and the direction (positive or negative). 333 

 For the prediction of nitrate content using the Phazir 2400, representation of the 334 

six latent variables (LV) used in constructing the calibration equation and the regression 335 

coefficients shows that the areas of the spectrum exerting greatest weight on model 336 

fitting were 1712, 1776, 1850, 1920, 1984, 2008, 2100, 2152 and 2264 nm. Their 337 



influence was either positive or negative, depending on the latent variable in question 338 

(Fig. 3).  339 

4. Conclusions 340 

These results suggest that NIRS is a very promising and useful sensor for the 341 

non-destructive quantification of changes in nitrate content and other internal quality 342 

parameters in summer squashes in the course of on-vine ripening, enabling decisions to 343 

be taken regarding the optimum harvesting time. Harvested fruit can thus be swiftly 344 

streamed, allowing batches with different nitrate contents to be processed separately. 345 

Findings also show that the use of portable MEMS-based NIRS instruments 346 

enables nitrate content to be measured, rapidly and in situ, during on-vine ripening, thus 347 

providing the industry with a means of establishing the final destination of the product, 348 

since if nitrate content exceeds the maximum levels stipulated under current legislation, 349 

the fruits cannot be used in the production of baby foods.  350 
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Table 1.  446 

Number of samples (N), range, mean, standard deviation (SD), and coefficient of variation (CV) for different calibration sets (C1 and C2) and for 447 

the validation set (V) 448 

 Parameters 

Nitrates (mg kg-1) Firmness (N) Dry matter (% fw) SSC (ºBrix) pH Titratable acidity (% 

citric acid) 

C1 C2  V C1 C2  V C1 C2  V C1 C2  V C1 C2  V C1 C2  V 

N 150 116 34 150 116 34 150 116 34 150 116 34 150 116 34 150 116 34 

Range 30.00-

1074.00 

30.00-

1074.00 

55.00-

1068.00 

0.25-

9.81 

0.25-

9.81 

1.35-

9.20 

3.48-

6.74 

3.48-

6.74 

3.71-

5.83 

3.60-

6.70 

3.60-

6.70 

3.70-

6.35 

5.86-

6.76 

5.86-

6.76 

5.99-

6.60 

0.07-

0.11 

0.07-

0.11 

0.07-

0.10 

Mean 410.25 403.49 433.34 5.76 5.67 6.05 4.87 4.92 4.67 4.73 4.75 4.65 6.31 6.31 6.29 0.09 0.08 0.09 

SD 288.68 280.13 69.43 2.09 2.14 1.94 0.67 0.68 0.62 0.61 0.60 0.66 0.17 0.18 0.16 0.01 0.009 0.008 

CV 70.37 69.42 73.73 36.28 37.74 32.07 13.76 13.82 13.28 12.90 12.63 14.19 2.69 2.85 2.54 11.11 11.25 8.89 

 449 

 450 



Table 2.  451 

Calibration statistics for NIR-based models for predicting internal quality parameters in 452 

intact summer squash. Training set C1. 453 

Parameter Math 

treatment 

N Range Mean SD SECV r2 CV 

(%) 

RPD 

Nitrates (mg 
kg-1) 

2,5,5,1 139 30.00-
1074.00 

386.64 271.82 112.44 0.83 29.08 2.42 

Firmness (N) 2,10,5,1 145 1.30-9.81 5.88 1.98 1.46 0.45 24.83 1.36 

Dry matter 
(% fw) 

2,10,5,1 145 3.48-6.74 4.84 0.65 0.38 0.66 7.85 1.71 

SSC (ºBrix) 1,5,5,1 144 3.70-6.00 4.71 0.58 0.33 0.68 7.01 1.76 

pH 1,5,5,1 144 5.86-6.62 6.30 0.17 0.11 0.57 1.75 1.55 

Titratable 
acidity (% 
citric acid) 

2,5,5,1 148 0.07-0.11 0.09 0.01 0.01 0.44 7.54 1.35 

 454 

 455 

 456 



Table 3 457 

MPLS regression statistics for NIR-based models for predicting internal quality parameters in intact summer squash. 458 

Parameter Math 

treatment 

Calibration Validation 

N Range Mean SD SECV r2 CV (%) RPD N r2 SEP SEP (c) Bias 

Nitrates (mg kg-1) 2,5,5,1 115 30.00-1074.00 398.82 276.8 145.04 0.73 36.37 1.91 32 0.67 163.75 165.55 16.25 

Dry matter (% fw) 1,5,5,1 111 3.48-6.74 4.90 0.66 0.38 0.67 7.69 1.75 34 0.50 0.48 0.47 -0.09 

SSC (ºBrix) 1,10,5,1 107 3.70-6.00 4.73 0.50 0.32 0.59 6.82 1.56 34 0.35 0.53 0.54 -0.02 

pH 2,5,5,1 113 5.86-6.62 6.31 0.17 0.11 0.56 1.81 1.50 34 0.33 0.14 0.14 -0.01 



Fig. 1. Mean and standard deviation spectrum for summer squash 459 

 460 

  461 



Fig. 2. Distribution of nitrate content for intact summer squashes during on-vine 462 

ripening. 463 
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Fig. 3. x-Loading weights (a) and regression coefficients (b) for summer squash nitrate 468 

content during on-vine ripening. 469 
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