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Abstract 22 

Near infrared reflectance (NIR) spectroscopy was used as a fast and accurate technology 23 

for the simultaneous measurement of color, sugar and organic acid content in intact Raf 24 

tomatoes. The potential of this method coupled with chemometric techniques based on 25 

modified partial least squares regression was assessed by comparison with the currently-26 

used traditional method for determining color, dry matter, soluble solid content, 27 

glucose, fructose, titratable acidity, malic acid and citric acid. At the same time, the 28 

performance of two spectrophotometers, differing primarily in terms of measurement 29 

principle and wavelength range, was evaluated. A total of 165 tomatoes (cv. “Raf”) 30 

were used in the construction of calibration models, testing various spectral signal 31 

pretreatments. The technology was well suited to sorting Raf tomatoes on the basis of 32 

color parameters (a* and a*/b*), soluble solid content and titratable acidity, and useful, 33 

though less accurate, for the sorting of fruits by the rest of the color parameters tested 34 

(b*, L*), as well as by sugar content (glucose and fructose), dry matter and citric and 35 

malic content, particularly when the diode array instrument was used. 36 

 37 

Keywords: near-infrared spectroscopy, tomato, external color, internal quality, MPLS 38 

regression. 39 

40 
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1. Introduction 41 

The tomato is the world’s most widely-consumed vegetable, and thus a key 42 

product on the global agricultural market (Scibisz et al., 2011). In many countries, 43 

tomato production is largely aimed at the fresh-produce market, and therefore requires  44 

the comprehensive monitoring of external and internal quality parameters both during 45 

on-stem growth and ripening and during subsequent industrial handling (Costa and 46 

Heuvelimk, 2005; Alvés De Oliveira et al., 2014). 47 

The tomato is composed mainly of water, soluble and insoluble solids, organic 48 

acids (principally citric acid) and micronutrients such as carotenoids and vitamins A and 49 

C (Pedro and Ferreira, 2007). Sugars and organic acids are responsible for sweetness 50 

and tartness, and also influence tomato flavor; as a result, they are the major factors 51 

affecting consumer acceptability (Baldwin et al., 2008, Kader, 2008; Causse et al., 52 

2010). Color also has a marked influence on the initial purchasing decision by 53 

consumers, who tend to link fruit color to taste quality (Causse et al., 2010). López-54 

Camelo and Gómez (2004) have suggested that the a*/b* ratio could be used for 55 

practical purposes as an objective ripening index, giving a realistic view of consumer 56 

perceptions. 57 

However, since the measurement of external and internal quality parameters 58 

using traditional analytical methods is highly time-consuming, destructive, costly and 59 

contaminant, there is a clear need for fast, accurate and non-destructive analytical 60 

techniques that can be used both in the field and by the industry, and that enable 61 

individual classification of tomatoes by quality. NIRS technology meets these 62 

requirements and also offers other advantages, making it ideal for monitoring purposes 63 

and for ensuring traceability: low per-sample cost; little or no need for sample 64 

preparation; ability to analyze a wide range of products; and a high degree of 65 
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reproducibility and repeatability (Slaughter and Abbott, 2004; Garrigues and De la 66 

Guardia, 2013). 67 

NIR technology is currently in widespread use for measuring chemical 68 

components and quality attributes in vegetable products (Saranwong and Kawano, 69 

2007, Sánchez and Pérez-Marín, 2011). The few studies dealing with intact tomatoes, 70 

however, focus largely on measuring total soluble solid content (Slaughter et al., 1996; 71 

Flores et al., 2009), titratable acidity (Flores et al., 2009), dry matter (Khuriyati et al., 72 

2004), color (Clement et al., 2008), and firmness (Shao et al., 2007). There are no 73 

reports in the literature regarding the use of NIRS spectroscopy for measuring glucose 74 

and fructose levels or citric and malic acid content in intact tomatoes, these being key 75 

factors for assessing ripeness and postharvest life, as well as exerting a crucial influence 76 

on the consumers’ decision to purchase. This is particularly true of the Raf tomato 77 

which, though outwardly ugly due to its distinctive dark-green coloring and almost-78 

black shoulder, boasts a salinity resistance guaranteeing an exquisite flavor rarely found 79 

in other varieties. No hitherto-published research has addressed the comparison of NIRS 80 

instruments differing in terms of cost, optical design, and suitability for on-site use for 81 

quality determination in tomatoes. 82 

This study sought to assess the feasibility of using NIRS spectroscopy to 83 

measure external and internal quality attributes (color, total soluble solid content, 84 

fructose and glucose levels, titratable acidity, citric and malic acid levels and dry matter 85 

content) in intact Raf tomatoes. Data analysis included a comparison between two NIRS 86 

instruments with very different optical designs, one of which is highly suited to 87 

laboratory measurement (monochromator spectrophotometer) and the other better suited 88 

to on-line use in the packing house (diode-array spectrophotometer). 89 

 90 



5 
 

2. Material and methods 91 

2.1. Sampling 92 

A total of 165 tomatoes (Lycopersicum esculentum Mill., cv. “Raf”) were 93 

harvested at commercial maturity in greenhouses in Almería (Spain). On arrival at the 94 

laboratory, fruits were promptly placed in refrigerated storage at 10ºC and 95% relative 95 

humidity. Prior to each measurement, samples were left until the near-surface fruit 96 

temperature had risen to, and stabilized at, laboratory temperature. 97 

2.2. Reference data 98 

Skin or external color values (L*, a*, and b*) were individually measured at the 99 

equator, turning the fruit through 120° between measurements, using a Minolta Chroma 100 

Meter CR-400 (Minolta Corporation, Ramsay, NJ) (CIE, 2004). Illuminant D65 and the 101 

2° standard observer were used for all measurements. The three measurements obtained 102 

per fruit for each of the color parameters tested were averaged. 103 

After these non-destructive measurements, fruits were halved and tissue from 104 

each fruit was taken at the same positions as those for the NIRS measurements. Dry 105 

matter content was determined by desiccation at 105ºC for 24 h (AOAC, 2000) and 106 

results were calculated as a percentage of final dry weight of the initial wet weight. 107 

Soluble solid content (SSC, in %) was measured as the refractometer reading for tomato 108 

juice, using a temperature-compensated digital Abbé-type refractometer (model B, 109 

Zeiss, Oberkochen, Würt, Germany). Titratable acidity (TA) was measured by titration 110 

with 0.1 NaOH to an end point of pH 8.1. An automatic titrator was used (Crison Micro 111 

TT 2050, Crison, Alella, Barcelona, Spain). Results were expressed as % citric acid. 112 

Sugars (glucose, fructose) and organic acids (citric and malic acids) were quantified by 113 

an enzymatic method using food-analysis kits (Boehringer Mannheim Co., Mannhein, 114 

Germany) and expressed as g 100 g-1 of fresh weight for sugars and mg 100 g-1 of fresh 115 
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weight for acids. These measurements were performed with a BM-704 automatic 116 

analyzer (Hitachi, Tokyo, Japan).  117 

Each sample was analyzed in duplicate. All measurements were performed 118 

immediately after VIS/NIRS spectrum collection. 119 

2.3. NIR analysis 120 

NIRS analysis was performed using two instruments that differ considerably in 121 

terms of both function and optical design: a Perten DA-7000, Flexi-Mode diode array 122 

spectrophotometer (Perten Instruments North America, Inc., Springfield, IL, USA), 123 

more suitable for “on site” measurements, and a FNS-6500 scanning monochromator 124 

(FOSS NIRSystems, Silver Spring, MD, USA), traditionally used in a laboratory 125 

setting. These instruments operate in the 400 to 1700 nm range with a 5 nm scanning 126 

interval, and in the 400 to 2500 nm range with a 2 nm scanning interval, respectively. 127 

Using the diode-array instrument, tomatoes were placed centrally on the fruit 128 

holder, with the stem-calyx axis vertical, calyx up, and were irradiated from above by 129 

the light source while they rotated. Three separate spectral measurements were made on 130 

each intact tomato, after a 120⁰ sample rotation each time. The three spectra were 131 

averaged to provide a mean spectrum for each intact fruit. 132 

The FNS-6500 instrument was interfaced to a remote reflectance fiber optic 133 

probe (NR-6539-A) with a 43 x 43 mm window; a dark compartment (340 x 238 x 222 134 

mm) was used to protect the detector assembly. Each fruit was hand-placed in the probe, 135 

so that the desired fruit location was centered on, and in direct contact with, the probe. 136 

The first measurement was made at a random location on the blossom of the fruit. The 137 

next two measurements were taken on the blossom end at rotations of roughly 120º and 138 

240º from the initial site. The three spectra were averaged to provide a mean spectrum 139 

for each tomato.  140 
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2.4. Spectral repeatability 141 

Before averaging the three spectra, the spectral repeatability of intact tomatoes 142 

was evaluated using the Root Mean Squared (RMS) statistic to eliminate spectra 143 

displaying considerable variations. One hundred and sixty-five samples were analyzed 144 

for this purpose. Three spectra were collected from each sample in the FNS-6500 and 145 

the DA-7000, in three different positions.  146 

The RMS statistic is the averaged root mean square of differences between the 147 

different subsamples scanned at n wavelengths (Shenk and Westerhaus, 1995a, 1996). 148 

The RMS for an individual sample (j) is defined as: 149 

𝑅𝑀𝑆𝐽 = 106
∑ 𝐷𝑖𝑗

2𝑛
𝑖=1

𝑛
; 𝐷𝑖𝑗 =  𝑦𝑖𝑗 − 𝑦𝑖  

 150 

where yij is log (1/R) at wavelength i for subsample j, and ỹi is log (1/R) at 151 

wavelength i for the average spectrum of N subsamples of a sample; n is the number of 152 

data points collected by the instrument (here, 1050 data points for the FNS instrument 153 

and 228 data points for the Perten instrument). 154 

In order to determine the admissible limit for spectrum quality and repeatability 155 

for each instrument and sample presentation mode, the standard deviation (STD) limit 156 

was used to obtain an RMS cut-off value (Martínez et al., 1998). 157 

𝑆𝑇𝐷𝑙𝑖𝑚𝑖𝑡 = 1.036 𝑆𝑇𝐷𝑘
2 𝑚⁄

𝑘=𝑚

𝑘=1

 

 158 

where STD is the standard deviation per sample and m is the number of samples. 159 

𝑆𝑇𝐷 = (𝑅𝑀𝑆𝑗 )2 (𝑁 − 1)⁄

𝑁

𝑗 =1

 

 160 

where N is the number of sub-samples. 161 
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2.5. Population structuring and detection of spectral outliers prior to calibration  162 

Principal Component Analysis (PCA) was performed on a set of N = 165 163 

samples in order to decompose and compress the data matrix. After PCA, the center of 164 

the spectral population was determined in order to detect outlier samples. The 165 

Mahalanobis distance (GH) was calculated between each sample and the center; 166 

samples with a GH value greater than 3 were considered outliers (Shenk and 167 

Westerhaus, 1995a). As spectral pretreatments, the Standard Normal Variate (SNV) 168 

plus Detrending (DT) procedure (Barnes et al., 1989) was used to remove the 169 

multiplicative interferences of scatter, and one derivative mathematical treatment was 170 

performed (1,5,5,1), where the first digit is the order of the derivative, the second is the 171 

gap over which the derivative is calculated, the third is the number of data points in a 172 

running average or smoothing and the fourth is the second smoothing (Shenk and 173 

Westerhaus, 1995b; ISI, 2000). 174 

2.6. Construction and validation of prediction models by MPLS regression 175 

Once spectral outliers had been removed (i.e. 7 of the original 165 samples), a 176 

set consisting of 158 samples was used to develop calibration models. The set was 177 

divided into two: a training set containing about 75% of the samples (N = 121) and a 178 

test set containing the remaining 25% (N = 37). These samples were selected following 179 

the method outlined by Shenk and Westerhaus (1991) using the CENTER algorithm 180 

included in the WinISI software package to calculate the Global Mahalanobis distance 181 

(GH). Samples were ordered based on the Mahalanobis distance to the center of the 182 

population, and three of every four were selected to be part of the calibration set.  183 

Modified Partial Least Squares (MPLS) regression (Shenk and Westerhaus, 184 

1995a) was used to obtain equations for predicting color, sugars, acids and dry matter 185 

content. Partial least squares (PLS) regression is similar to principal component 186 
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regression (PCR), but uses reference data (chemical, physical, etc.) and spectral 187 

information to identify factors useful for fitting (Williams, 2001). MPLS is often more 188 

stable and accurate than the standard PLS algorithm. In MPLS, the NIR residuals at 189 

each wavelength, obtained after each factor is calculated, are standardized (divided by 190 

the standard deviations of the residuals at a wavelength) before calculating the next 191 

factor. When developing MPLS equations, cross-validation is recommended to select 192 

the optimal number of factors and to avoid overfitting (Shenk and Westerhaus, 1995a). 193 

For cross validation, the calibration set is partitioned in several groups; each group is 194 

then validated using a calibration developed on the other samples; finally the validation 195 

errors are combined to obtain a standard error of cross validation (SECV). In all cases, 196 

cross validation was performed by splitting the population into six groups.  197 

Signal noise at the beginning and end of the spectral range was eliminated for 198 

both instruments: the resulting range for the DA-7000 spectrometer was from 515 to 199 

1650 nm, while that of the FNS-6500 monochromator was from 516 to 2200 nm. 200 

For each analytical parameter, different mathematical treatments were evaluated. 201 

For scatter correction, the Standard Normal Variate (SNV) and Detrending (DT) 202 

methods were tested (Barnes et al., 1989). Additionally, four derivative mathematical 203 

treatments were tested in the development of NIRS calibrations: 1,5,5,1; 2,5,5,1; 204 

1,10,5,1; 2,10,5,1 (Shenk and Westerhaus, 1995b).  205 

The statistics used to select the best equations were: standard error of calibration 206 

(SEC), coefficient of determination of calibration (R2), standard error of cross-207 

validation (SECV), coefficient of determination for cross-validation (r2), RPD or ratio 208 

of the standard deviation of the original data (SD) to SECV, and coefficient of variation. 209 

These latter two statistics enable SECV to be standardized, facilitating the comparison 210 

of the results obtained with sets of different means (Williams, 2001). 211 
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The best models obtained for the calibration set, as selected by statistical criteria, 212 

were subjected to evaluation using samples not involved in the calibration procedure. A 213 

test set composed of 37 samples, not used previously in the model, was evaluated 214 

following the protocol outlined by Windham et al., (1989). 215 

3. Results and discussion 216 

3.1. Spectral repeatability 217 

Optimization of spectrum quality and repeatability is crucial to the construction 218 

of models which are both accurate and robust. Statistical methods such as defined RMS 219 

cut-off limit can be useful for this purpose. The RMS cut-off was calculated for the two 220 

instruments as shown in section 2.4.  221 

For the Perten DA-7000, the mean STD for the samples analyzed was 55,732 222 

μlog (1/R), representing an RMS cut-off of 79,296 μlog (1/R). For the FNS-6500 223 

instrument, mean STD and the RMS cut-off were 70,436 μlog (1/R) and 82,508 μlog 224 

(1/R), respectively. Any sample whose triplicated screening scans yielded an RMS 225 

above this value was eliminated and repeated until values fell below that limit, thus 226 

ensuring a high degree of spectrum repeatability.  227 

No reference to the calculated RMS cut-off value for intact tomatoes has been 228 

found in the literature, although this statistic is essential to the generation of 229 

representative libraries. 230 

The mean spectrum of the three replicates of each sample was used for further 231 

analysis. 232 

3.2. Descriptive data for NIR calibrations and validations sets  233 

Values obtained for range, mean, SD and CV for each of the parameters 234 

measured (calibration and validation sets) are shown in Table 1. Structured selection 235 

based wholly on spectral information, using the CENTER algorithm, proved suitable, in 236 



11 
 

that the calibration and validation sets displayed similar values for range, mean and SD 237 

for all study parameters; moreover, the ranges of the validation set lay within those of 238 

the calibration set. 239 

All parameters except color measurements L* and b* displayed marked 240 

variability, with CV values of over 18% for both the calibration and validation sets.  241 

Williams (2001) and Pérez-Marín et al., (2005) have highlighted the importance 242 

both of sample set size and of sample distribution within the calibration set, noting that 243 

sample sets for calibration should ideally ensure uniform distribution of composition 244 

across the range of the study parameter in question. 245 

3.3. Prediction of color quality parameters using MPLS regression and NIR spectra 246 

The best equations for measuring color-related parameters (L*, a*, b* and a*/b*) 247 

for the two instruments tested, using the combination of signal pretreatments that 248 

yielded the best results in each case, are shown in Table 2. 249 

Models obtained using the Perten DA-7000 instrument displayed greater 250 

predictive ability, for all color parameters, than those obtained using the 251 

monochromator. Models constructed for L* and b* using the diode-array instrument 252 

enabled samples to be classified into high, medium and low values, whilst models for a* 253 

and a*/b* displayed good predictive capacity within the limits established by Shenk and 254 

Westerhaus (1996). Models obtained with the FNS-6500 monochromator only enabled 255 

samples to be classified into high and low values (Shenk and Westerhaus, 1996). 256 

No references have been found in the literature to color parameter prediction in 257 

intact Raf tomatoes. However, the RPD values recorded here were lower than those of 258 

between 2.81 and 7.22 reported by Clément et al. (2008) for color prediction (L*, a*, b* 259 

and a*/b*) in Canadian tomatoes at varying degrees of ripeness using a Varian Cary 500 260 

UV-VIS-NIR scanning spectrophotometer equipped with an integration sphere, working 261 
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in the spectral region 400-1000 nm. This highlights the difficulty of measuring color 262 

parameters in Raf tomatoes, in which both form and color distribution are highly 263 

irregular (Fig. 1). 264 

Values for a*, like those of b* and a*/b*, increase significantly during ripening 265 

due to higher carotenoid levels, and thus also provide a useful indicator of fruit ripeness 266 

(Kader et al., 1978). It should also be stressed that the diode-array instrument enables 267 

color parameters to be measured on-site, which is particularly useful for the tomato 268 

handling industry. For Raf tomatoes, fruit color is regarded as synonymous with quality 269 

and taste: darker-colored—almost bluish—fruits are likely to have the best taste 270 

qualities; the green-black shoulder, while not an essential quality indicator, shows that 271 

the fruit has received sufficient sunlight and is therefore sweeter, and is also an ideal 272 

indicator for distinguishing Raf from similar tomatoes. 273 

Validation statistics for the prediction of these parameters in intact tomatoes are 274 

also shown in Table 2. In terms of the validation protocol recommended by Windham et 275 

al., (1989) for the routine implementation of NIRS prediction models, the only models 276 

yielding sufficiently accurate predictions were those constructed for parameters a* and 277 

a*/b* using the DA-7000 spectrophotometer. 278 

3.4. Prediction of internal quality parameters using MPLS regression and NIR spectra 279 

Models obtained for all internal quality parameters using the Perten DA-7000 280 

displayed greater predictive capacity than those constructed with the FNS-6500, with 281 

the exception of dry matter content (Table 3).  282 

For predicting dry matter, the model constructed using the monochromator and 283 

D2 log (1/R) (r2 = 0.59; SECV = 0.26% fw) enabled samples to be classified into high, 284 

medium and low values, whereas the model obtained with the diode-array instrument 285 
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and the same second derivative only enabled classification into high and low values (r2 286 

= 0.45; SECV = 0.29% fw). 287 

Walsh et al., (2004) reported slightly better predictive capacity (r2 = 0.64; SECV 288 

= 0.20% fw) using a Carl Zeiss MMS1 NIR-enhanced spectrometer in the spectral 289 

region from 300 nm to 1100 nm, noting that the low standard deviation value for the 290 

sample set was probably the main cause of poor model performance. Increasing the 291 

range for this parameter could improve the predictive capacity of the models. This 292 

would be useful for the tomato packing industry, since non-destructive measurement of 293 

tomato dry matter (DM) content is essential for fruit classification purposes, ensuring 294 

that fruit batches are of similar DM levels. It may also have implications both for 295 

consumer acceptability—fruits with higher dry matter content have a better flavor—and 296 

for improving storage potential and ripe fruit quality. 297 

Models for total soluble solid content obtained with D2 log (1/R) using the 298 

monochromator (r2 = 0.77; SECV = 0.64%) and the diode-array instrument (r2 = 0.79; 299 

SECV = 0.59%) displayed good predictive capacity in terms of Shenk and 300 

Westherhaus’ recommendations (1996). 301 

Although other studies of SSC prediction in tomatoes using NIRS technology 302 

(Slaughter et al., 1996; Hong and Tsou, 1998; Walsh et al., 2004; He et al., 2005; Shao 303 

et al., 2007) report models with r2 values ranging from 0.49 to 0.97 and SEP values of 304 

between 0.22 and 0.38ºBrix, the models constructed here for predicting SSC displayed 305 

adequate predictive capacity, bearing in mind the irregular shape of this tomato variety, 306 

which undoubtedly influences measurements. 307 

For glucose, the model obtained using the DA-7000 (r2 = 0.61; SECV = 0.38 308 

g/100 g fw) displayed greater accuracy and precision than its counterpart constructed 309 

using the FNS-6500 (r2 = 0.50; SECV = 0.41 g/100 g fw), enabling values to be 310 
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classified into high, medium and low. For fructose, results obtained using both the 311 

diode-array instrument (r2 = 0.43; SECV = 0.37 g/100 g fw) and the monochromator (r2 312 

= 0.30; SECV = 0.37 g/100 g fw) only enabled classification into high and low values. 313 

Fructose and glucose are components of the main sugars and carbohydrates in tomatoes. 314 

MPLS regression showed that spectra could be employed to distinguish between sample 315 

ripeness stages. 316 

No published studies address the direct measurement of these sugars in intact 317 

tomatoes. Pedro and Ferreira (2007) reported better predictive capacity both for glucose 318 

(r2 = 0.98; RMSEP = 0.54 %) and for fructose (r2 = 0.94; RMSEP = 0.88 %) although 319 

their results are not wholly comparable, since they used a set comprising samples of 320 

tomato concentrate products with total solid content ranging from 6.9 to 35.9%, and 321 

thus worked with a more varied calibration set. 322 

Although measurement of acidity-related parameters in intact fruit is notoriously 323 

difficult (Flores et al., 2009), the models obtained for predicting titratable acidity using 324 

both instruments displayed good predictive capacity, with values of r2 = 0.72 and 0.70 325 

for the diode-array and monochromator, respectively, and SECV = 0.06% citric acid in 326 

both cases. 327 

Hong and Tsou (1998) recorded an r2 value of 0.94, i.e. higher than that obtained 328 

here, for measurements of  titratable acidity, although they used chopped rather than 329 

intact tomato; the residual error reported by these authors was similar to that recorded 330 

here (0.06% citric acid). 331 

Models constructed for citric and malic acid content using the diode-array 332 

instrument yielded r2 values of between 0.50 and 0.49, and SECV values in the range 333 

80.82 - 22.43 mg/100 g fw, whilst with the monochromator r2 value lay between 0.30 334 

and 0.42 while SECV values ranged from 95.68 to 23.79 mg/100 g fw. These results 335 
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suggest that NIRS technology may be used for screening purposes, to distinguish 336 

between low and high levels of both acids. 337 

There are no published reports on the measurement of malic and citric acid in 338 

intact tomatoes using NIRS technology. However, these parameters are linked to the 339 

behavior of the tomato during ripening, and may thus act as indicators of ripeness and 340 

thus of optimal harvesting time. Malic acid levels decreases significantly during the 341 

later stages of ripening, while citric acid content generally increases (Baldwin et al., 342 

1991); non-destructive measurement of citric and malic acid content is therefore of 343 

considerable value. 344 

Validation statistics for the prediction of internal parameters in intact Raf 345 

tomatoes using both instruments are shown in Table 3. 346 

The models constructed for predicting SSC in intact tomatoes using both 347 

instruments tested, and for predicting TA using the diode array instrument, met the 348 

validation requirements in terms of r2 (r2 > 0.6) and both the SEP(c) and the bias were 349 

within confidence limits: the equations thus ensure accurate prediction, and can be 350 

applied routinely. For dry matter and glucose content, it should be stressed that SEP(c) 351 

and bias lay within confidence limits for both instruments, although r2 results did not 352 

always attain recommended minimum values, indicating that the NIRS equations 353 

constructed should be regarded as a first step in the fine-tuning of NIRS technology for 354 

the on-site monitoring of internal quality parameters in this tomato.  355 

Slight differences in accuracy were noted between models constructed using the 356 

two instruments tested, although better results were obtained with the diode-array 357 

instrument for all parameters except dry matter content. 358 

The models predicted fructose content, citric and malic acid content in 359 

validation-set samples with low values for r2, in neither case meeting the 360 
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recommendations of Windham et al., (1989). These models are thus not suitable for 361 

routine applications. 362 

4. Conclusions 363 

Near infrared reflectance spectroscopy combined with multivariate analysis is a very 364 

promising tool for determining the overall composition of intact Raf tomatoes, allowing 365 

ripeness to be monitored not only in terms of visual appearance but also in terms of 366 

taste, within one minute. The results of external validation indicate that parameters such 367 

as color (a* and a*/b*), SSC and TA can be routinely predicted using the diode array 368 

instrument, thus considerably reducing analysis time and enabling incorporation of 369 

these models into on-line NIR grading systems for measuring the ripeness of individual 370 

fruits in lines of harvested tomatoes. This could in turn lead to improved taste 371 

acceptability for this product. By contrast, the models constructed were unable to 372 

accurately predict citric and malic acid levels in tomatoes. It should be stressed that the 373 

results obtained here using a diode-array sensor should be regarded as the first step in 374 

the fine-tuning of NIRS for on- site quality monitoring of the Raf tomato, a complex 375 

vegetable with an irregular form. Over the coming years, recalibrations may be required 376 

in order to enhance the robustness of the models obtained; the variability observed in 377 

this type of tomato could be reflected by including fruits harvested in different years and 378 

from different orchards, since these factors influence the chemical composition of 379 

tomatoes. 380 

Acknowledgements 381 

This research was funded by the Andalusian Regional Government under the Research 382 

Excellence Program (Project No. 3713 ‘Safety and Traceability in the Food Chain using 383 

NIRS’). The authors thank Ms. Katherine Flores-Rojas and Ms. Mª Carmen Fernández 384 

for their technical assistance. 385 



17 
 

References 386 

Alvés De Oliveira, G.A., Bureau, S., Renard, C.M.-G.C., Pereira-Netto, A.B., de 387 

Castilhos, F., 2014. Comparison of NIRS approach for prediction of internal 388 

quality traits in three fruit species. Food Chem. 143, 223-230. 389 

AOAC, 2000. Official Methods of Analysis of AOAC International. 17th ed. AOAC, 390 

Gaithersburg, MD, USA.  391 

Baldwin, E.A., Goodner, K.L., Plotto, A., 2008. Interaction of volatiles, sugars, and 392 

acids on perception of tomato aroma and flavor descriptors. J. Food Sci. 73, 393 

S294-S307. 394 

Baldwin, E.A., Nisperos-Carriedo, M.O., Moshonas, M.G., 1991. Quantitative analysis 395 

of flavor and other volatiles and for certain constituents of two tomato cultivars 396 

during ripening. J. Am. Soc. Hortic. Sci. 116, 265–269. 397 

Barnes, R.J., Dhanoa, M.S., Lister, S.J., 1989. Standard Normal Variate Transformation 398 

and De-trending of near infrared diffuse reflectance spectra. App. Spectrosc. 43, 399 

772-777. 400 

Causse, M., Friguet, C., Coiret, C., Moneta, E., Grandillo, S. 2010. Consumer 401 

preferences for fresh tomato at the European scale: a common segmentation on 402 

taste and firmness. J. Food Sci. 75, 531-541. 403 

CIE, 2004. Colorimetry, 3rd ed. Commission Internationale De L’eclairage, Vienna, 404 

Austria.  405 

Clément, A., Dorais, M., Vernon, M., 2008. Nondestructive measurement of fresh 406 

tomato lycopene content and other physicochemical characteristics using 407 

Visible-NIR Spectroscopy. J. Agr. Food Chem. 56, 9813–9818. 408 

Costa, J.M., Heuvelimk, E., 2005. Introduction: the tomato crop and industry. In: 409 

Heuvelink, E. (Ed.), Tomatoes. CABI Publishing, Oxfordshire, UK. pp. 1–19. 410 



18 
 

Flores, K., Sánchez, M.T., Pérez-Marín, D., Guerrero, J.E., Garrido-Varo, A., 2009. 411 

Feasibility in NIRS instruments for predicting internal quality in intact tomato. J. 412 

Food Eng. 91, 311-318. 413 

Garrigues, S., De la Guardia, M., 2013. Non-invasive analysis of solid samples. TrAC-414 

Trend Anal. Chem. 43, 161–173. 415 

He, Y., Zhang, Y., Pereira, A. G., Gómez, A. H., Wang, J., 2005. Nondestructive 416 

determination of tomato fruit quality characteristics using Vis/NIR spectroscopy 417 

technique. Int. J. Inform. Technol. 11, 97–108 418 

Hong, T. L., Tsou, S.C.S., 1998. Determination of tomato quality by near infrared 419 

spectroscopy. J. Near Infrared Spectrosc. 6, A321-A324. 420 

ISI, 2000. The Complete Software Solution Using a Single Screen for Routine Analysis, 421 

Robust Calibrations, and Networking. Manual, FOSS NIRSystems/TECATOR. 422 

Infrasoft International, LLC, Silver Spring, MD. 423 

Kader, A.A. 2008. Flavor quality of fruits and vegetables. J. Sci. Food Agric. 88, 1863–424 

1868. 425 

Kader, A.A., Morris, L.L., Stevens, M.A., Albright-Holton, M., 1978. Composition and 426 

flavor quality of fresh market tomatoes as influenced by some postharvest 427 

handling. J. Am. Soc. Hortic. Sci. 103, 6-11. 428 

Khuriyati, N., Matsuoka, T., Kawano, S., 2004. Precise near infrared spectral 429 

acquisition of intact tomatoes in interactance mode. J. Near Infrared Spectrosc. 430 

12, 391–395. 431 

López-Camelo, A. F., Gómez, P. A. 2004. Comparison of color indexes for tomato 432 

ripening. Hortic. Bras. 22, 534-537. 433 



19 
 

Martínez, M.L., Garrido, A., De Pedro, E.J., Sánchez, L. 1998. Effect of sample 434 

heterogeneity on NIR meat analysis: The use of the RMS statistic. J. Near 435 

Infrared Spectrosc. 6, 313–320. 436 

Pedro, A. M. K., Ferreira, M. M. C. 2007. Simultaneously Calibrating Solids, Sugars 437 

and Acidity of Tomato Products Using PLS2 and NIR Spectroscopy. Anal. 438 

Chim. Acta 595, 221–227. 439 

Pérez-Marín, D.C., Garrido-Varo, A., Guerrero-Ginel, J.E., Gómez-Cabrera, A. 2005. 440 

Implementation of local algorithm with NIRS for compliance assurance in 441 

compound feedingstuffs. Appl. Spectrosc. Rev. 59, 69-77. 442 

Sánchez, M.T., Pérez-Marín, D., 2011. Nondestructive measurement of fruit quality by 443 

NIR spectroscopy. In: Vázquez, M., Ramírez, J.A. (Eds.), Advances in Post-444 

Harvest Treatments and Fruit Quality and Safety. Nova Science Publishers Inc., 445 

Hauppauge, NY, USA, pp. 101-163 446 

Saranwong, S., Kawano, S., 2007. Applications to agricultural and marine products: 447 

fruits and vegetables. In: Ozaki, Y., McClure, W.F., Christy, A.A. (Eds.), Near-448 

Infrared Spectroscopy in Food Science and Technology. John Wiley & Sons, 449 

Inc., New Jersey, Hoboken, pp. 219–242. 450 

Scibisz, I., Reich, M., Bureau, S., Gouble, B., Causse, M., Bertrand, D., Renard, C., 451 

2011. Mid-infrared spectroscopy as a tool for rapid determination of internal 452 

quality parameters in tomato. Food Chem. 125, 1390-1397. 453 

Shao, Y., He, Y., Gómez, A.H., Pereira, A.G., Qiu, Z., Zhang, Y., 2007. Visible/near 454 

infrared spectrometric technique for nondestructive assessment of tomato 455 

“Heatwave” (Lycopersicum esculentum) quality characteristics. J. Food Eng. 81, 456 

672-678. 457 



20 
 

Shenk, J.S., Westerhaus, M.O., 1991. Population structuring of near infrared spectra and 458 

modified partial least squares regression. Crop Sci. 31, 1548-1555. 459 

Shenk, J.S., Westerhaus, M.O., 1995a. Analysis of Agriculture and Food Products by 460 

Near Infrared Reflectance Spectroscopy. Monograph, NIRSystems, Inc., 12101 461 

Tech Road, Silver Spring, MD 20904, USA. 462 

Shenk, J.S., Westerhaus, M.O., 1995b. Routine Operation, Calibration, Development 463 

and Network System Management Manual. NIRSystems, Inc., 12101 Tech Road, 464 

Silver Spring, MD 20904, USA. 465 

Shenk, J.S., Westerhaus, M.O., 1996. Calibration the ISI way. In: Davies, A.M.C., 466 

Williams, P.C. (Eds.), Near Infrared Spectroscopy: The Future Waves. NIR 467 

Publications, Chichester, UK, pp.198-202. 468 

Slaughter, D.C., Abbott, J.A., 2004. Analysis of fruits and vegetables. In: Roberts, C.A., 469 

Workman, J., Reeves III, J.B. (Eds.), Near-Infrared Spectroscopy in Agriculture. 470 

ASA, CSSA and SSSA, Madison, WI, pp. 377–398. 471 

Slaughter, D.C., Barrett, D., Boersig, M., 1996. Nondestructive determination of soluble 472 

solids in tomatoes using near infrared spectroscopy. J. Food Sci. 61, 695-697. 473 

Walsh, K.B., Golic, M., Greensill, C.V., 2004. Sorting of fruit using near infrared 474 

spectroscopy: application to a range of fruit and vegetables for soluble solids and 475 

dry matter content. J. Near Infrared Spectrosc. 12, 141–148. 476 

Williams, P.C., 2001. Implementation of near-infrared technology. In: Williams, P.C., 477 

Norris, K.H. (Eds.), Near-Infrared Technology in the Agricultural and Food 478 

Industries. AACC, Inc., St. Paul, Minnesota, pp. 145-169.  479 

Windham, W.R., Mertens, D.R., Barton II, F.E., 1989. Protocol for NIRS calibration: 480 

sample selection and equation development and validation. In: Martens, G.C., 481 

Shenk, J.S., Barton II, F.E. (Eds.), Near Infrared Spectroscopy (NIRS): Analysis 482 



21 
 

of Forage Quality. Agriculture Handbook, vol. 643. Government Printing Office, 483 

Washington, DC, pp. 96–103. 484 

485 



22 
 

Table 1  486 

Statistical analysis of calibration and validation sets: data range, mean, standard 487 

deviation (SD), and coefficient of variation (CV). 488 

Parameter Set Range Mean SD CV (%) 

L* Calibration 28.92-58.18 47.73 3.30 6.93 

Validation 43.28-54.32 48.03 2.65 5.53 

a* Calibration -18.14-10.42 -8.46 4.77 56.36 

Validation -14.96-7.36 -8.62 5.18 60.06 

b* Calibration 20.96-47.15 28.88 3.50 12.15 

Validation 23.99-35.19 28.69 2.60 9.07 

a*/b* Calibration -0.53-0.37 -0.29 0.16 57.05 

Validation -0.53-0.26 -0.29 0.17 59.19 

Dry matter (% 
fw) 

Calibration 0.60-3.03 1.55 0.42 27.58 

Validation 0.69-2.67 1.64 0.47 28.93 

SSC (%) Calibration 2.50-9.00 5.29 1.32 25.11 

Validation 2.75-8.00 5.36 1.25 23.47 

Glucose (g 
100 g-1 fw) 

Calibration 0.86-4.39 2.17 0.63 29.14 

Validation 1.03-3.89 2.18 0.64 29.62 

Fructose (g 
100 g-1 fw) 

Calibration 0.91-4.35 1.88 0.53 28.59 

Validation 0.91-3.00 1.89 0.50 26.77 

Titratable 
acidity (% 
citric acid) 

Calibration 0.16-0.67 0.36 0.11 30.90 

Validation 0.20-0.58 0.35 0.09 27.09 

Citric acid 
(mg 100 g-1 
fw) 

Calibration 187.46-895.68 449.57 122.96 27.35 

Validation 250.75-647.71 446.55 97.06 21.74 

Malic acid  
(mg 100 g-1 
fw) 

Calibration 51.84-282.01 134.82 34.35 25.48 

Validation 62.90-180.20 132.60 24.54 18.51 

 489 

 490 



23 
 

Table 2  

MPLS regression statistics for NIR-based models for predicting external quality parameters in Raf tomatoes. 

Parameter Instrument Spectral 
range (nm) 

Mathematic 
treatment 

Calibration Validation 

N SECV r2 RPD CV N r2 SEP SEP (c) Bias 

L* FNS-6500 516-2200 2,10,5,1 116 2.04 0.48 1.37 5.83 36 0.31 2.06 2.09 0.12 
DA-7000 515-1650 2,10,5,1 111 1.56 0.59 1.56 5.07 35 0.50 1.85 1.84 -0.32 

a* FNS-6500 516-2200 1,10,5,1 116 3.16 0.47 1.36 48.99 37 0.37 4.15 4.21 -0.09 
DA-7000 515-1650 2,5,5,1 113 2.19 0.74 1.97 49.59 35 0.76 2.58 2.60 0.32 

b* FNS-6500 516-2200 2,5,5,1 120 2.56 0.34 1.21 10.78 37 0.16 2.46 2.50 -0.07 
DA-7000 515-1650 2,5,5,1 111 1.81 0.67 1.71 10.71 36 0.23 2.53 2.55 -0.24 

a*/b* FNS-6500 516-2200 2,10,5,1 118 0.12 0.38 1.26 52.75 37 0.44 0.13 0.13 -0.01 
DA-7000 515-1650 2,10,5,1 110 0.07 0.80 2.23 51.46 34 0.75 0.09 0.09 -0.01 
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Table 3 

MPLS regression statistics for NIR-based models for predicting internal quality parameters in Raf tomatoes. 

Parameter Instrument Spectral 
range (nm) 

Mathematic 
treatment 

Calibration Validation 
N SECV r2 RPD CV N r2 SEP SEP (c) Bias 

Dry matter 
(% fw) 

FNS-6500 516-2200 2,10,5,1 116 0.26 0.59 1.54 26.39 34 0.49 0.32 0.30 0.12 

DA-7000 515-1650 2,10,5,1 116 0.29 0.45 1.30 24.76 35 0.39 0.33 0.33 0.01 

SSC (%) FNS-6500 516-2200 2,5,5,1 119 0.64 0.77 2.08 25.00 36 0.60 0.83 0.84 0.01 

DA-7000 515-1650 2,5,5,1 113 0.59 0.79 2.13 24.23 36 0.75 0.65 0.65 -0.05 

Glucose (g 
100 g-1 fw) 

FNS-6500 516-2200 1,10,5,1 113 0.41 0.50 1.40 26.71 35 0.52 0.44 0.45 0.02 

DA-7000 515-1650 1,10,5,1 111 0.38 0.61 1.57 27.75 34 0.53 0.42 0.42 -0.07 

Fructose (g 
100 g-1 fw) 

FNS-6500 516-2200 1,5,5,1 113 0.37 0.30 1.20 24.33 36 0.35 0.38 0.39 0.02 

DA-7000 515-1650 2,10,5,1 116 0.37 0.43 1.29 25.57 37 0.36 0.40 0.41 -0.02 

Titratable 
acidity (% 
citric acid) 

FNS-6500 516-2200 1,5,5,1 118 0.06 0.70 1.83 30.15 37 0.56 0.07 0.07 -0.01 

DA-7000 515-1650 2,5,5,1 115 0.06 0.72 1.87 29.92 35 0.69 0.06 0.06 -0.01 

Citric acid 
(mg 100 g-1 
fw) 

FNS-6500 516-2200 2,10,5,1 119 95.68 0.30 1.18 25.57 35 0.31 85.93 86.58 10.14 

DA-7000 515-1650 1,10,5,1 117 80.82 0.50 1.39 25.27 37 0.38 81.18 82.09 5.86 

Malic acid 
(mg 100 g-1 
fw) 

FNS-6500 516-2200 2,10,5,1 115 23.79 0.42 1.28 22.84 37 0.27 22.07 22.30 -1.75 

DA-7000 515-1650 1,10,5,1 117 22.43 0.49 1.40 23.60 37 0.34 21.76 21.87 -2.80 
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Fig.1. Raf tomato 

 

 

 

 


