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Abstract 21 

Texture-related parameters were assessed in intact green asparagus at harvest and 22 

during postharvest storage using near-infrared spectroscopy combined with MPLS and 23 

LOCAL algorithms. Three spectrophotometers were evaluated for this purpose: a 24 

monochromator (range 400–2500 nm), a diode-array Vis–NIR spectrophotometer 25 

(range 400–1700 nm), and a handheld micro-electro-mechanical system (MEMS) 26 

spectrophotometer (range 1600–2400 nm). 300 green asparagus spears (cv. ‘Grande’) 27 

were used to obtain calibration models based on reference data and NIR data. Results 28 

for maximum shear force showed that LOCAL algorithm improved the predictive 29 

capacity of models constructed using all three NIRS instruments, increasing r2 by 24%, 30 

16% and 56% and reducing the SEP(c) values by 11%, 8% and 14%, respectively. For 31 

cutting energy, the LOCAL also improved the predictive capacity of the models (r2 32 

increased by 3% for the monochromator and the diode-array instrument and by 6% for 33 

the MEMS device; and the SEP(c) decreased by 3% in the three instruments). It is 34 

worth noting that while the monochromator and diode-array instruments displayed 35 

similar predictive capacity for the parameters tested, the MEMS instrument achieved 36 

slightly poorer results but has clear advantages for the measurement of texture in intact 37 

asparagus, being economical, portable, and easy to use in situ. 38 

Keywords In situ NIRS sensors; MEMS technology; Intact green asparagus; Texture 39 

parameters; LOCAL algorithm. 40 

41 
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Introduction 42 

Texture, like external appearance, is one of the properties most influencing consumer 43 

acceptance or rejection of green asparagus (Bhowmik et al. 2000; Fuchs et al. 2008; 44 

Sanz et al. 2009). 45 

Asparagus texture is determined by a number of pre-harvest and post-harvest 46 

factors, including: variety, type of agriculture, climate conditions, spear length and 47 

diameter, cut location, and postharvest storage conditions and duration. Growers, 48 

processors and consumers would benefit from any method enabling them to assess the 49 

impact of these factors on spear acceptability and shelf life (Rodríguez-Arcos et al. 50 

2002a; Rodríguez et al. 2004).  51 

Szczesniak (2002) notes the requirements to be met by an ideal texture-52 

measurement system, which include: ease of use, speed, repeatability, good correlation 53 

with sensory methods, a mechanism of action similar to chewing, complete 54 

measurement of the attribute, accurate knowledge of what is being measured, and 55 

finally applicability to varying sizes. Asparagus texture has traditionally been assessed 56 

using destructive instrumental or sensory techniques (Rodríguez-Arcos et al. 2002b), 57 

thus permitting the quality evaluation of only a small number of samples from any 58 

given batch. 59 

Near-infrared (NIR) spectroscopy is a particularly promising analytical 60 

technique for the quality assurance, certification and traceability of fruit and vegetables 61 

from grower to consumer (Saranwong and Kawano 2007; Sánchez and Pérez-Marín 62 

2011); it is fast and non-destructive, and meets many of the criteria for texture 63 

measurement listed above. NIRS technology may therefore provide asparagus growers 64 

and processors with a viable alternative for product analysis. 65 
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Early research by Pérez-Marín et al. (2002) into the prediction of texture in 66 

green asparagus using NIRS technology measured maximum shear force and cutting 67 

energy on dried, ground samples using a monochromator instrument. Later, Flores-68 

Rojas et al. (2009) measured the same two parameters in intact green asparagus using 69 

only monochromator and diode-array instruments. No published studies to date have 70 

addressed the prediction of texture in intact green asparagus using a portable, MEMS-71 

based spectrophotometer. Moreover, the authors of these two papers only applied 72 

multivariate analysis methods based on global calibrations, using linear regression 73 

strategies, and particularly modified partial least squares (MPLS) regression. When 74 

using these methods, the selection of samples included in the calibration set is a critical 75 

process that greatly affects the precision and accuracy of the calibrations performed; the 76 

samples selected for calibration should include all possible sources of variation 77 

encountered during prediction, in order to increase the robustness of the calibration, 78 

although this usually decreases the accuracy of prediction (Shenk et al. 1997). In this 79 

respect, it has been reported that non-linear algorithms such as the LOCAL regression 80 

algorithm developed by Shenk et al. (1997) notably improve the precision and accuracy 81 

of the models as compared to those obtained using linear regression strategies, and that 82 

this algorithm obviates the need to choose between accuracy and robustness (Shenk et 83 

al., 2001; Sánchez et al., 2012). The LOCAL algorithm additionally appears to offer a 84 

promising regression strategy for predicting physical, texture-related attributes (Sánchez 85 

et al. 2011; Sánchez et al. 2012), enabling parameters such as maximum shear force and 86 

cutting energy to be modeled more effectively using local or specific equations. 87 

The present study sought to investigate the viability of using NIRS technology in 88 

conjunction with non-linear regression strategies such as LOCAL to evaluate the texture 89 

of intact green asparagus both at harvest and during postharvest storage, and to compare 90 
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the results with those obtained with models constructed using a global calibration 91 

strategy. At the same time, the performance of three commercial NIRS instruments was 92 

compared: a high-end monochromator suitable for laboratory measurements, used here 93 

for reference purposes, and two instruments suitable for in situ measurements: a diode-94 

array spectrophotometer and a MEMS-based spectrophotometer. 95 

Material and Methods 96 

Asparagus 97 

A total of 300 green asparagus spears (Asparagus officinalis L., cv. ‘Grande’), grown in 98 

selected, controlled plots in Huétor-Tájar (Granada, Spain) using organic (N = 120 99 

spears) and conventional (N = 180 spears) methods were harvested by hand in 2008. 100 

Conventionally-grown spears were harvested in April, May and June, whereas 101 

organically-grown spears were harvested only in April and May, since production 102 

ceased in late May. 103 

Harvested spears were transported in refrigerated containers to the University of 104 

Córdoba laboratories, where they were kept in refrigerated storage (2ºC, 95% R.H.), 105 

with their ends in water throughout the trial period. Samples were drawn for analysis at 106 

7, 14, 21 and 28 days; fresh untreated samples (0 days) were used as controls. 107 

At the end of the pre-established postharvest storage period, spear texture 108 

(maximum shear force and cutting energy) was analyzed by NIR spectroscopy. For this 109 

purpose, spears were cut into three portions: tip (0-6 cm, measured from the apex of the 110 

spear), middle portion (6-12 cm) and base (12-18 cm), thus yielding a total of 900 111 

samples (N = 540 conventionally-grown and N = 360 organically-grown). 112 

Spectrum Collection 113 

NIR spectra were collected on all samples in interactance-reflectance mode (instrument 114 

1) and reflectance mode (instruments 2 and 3), using: (1) a FNS-6500 monochromator 115 
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(FOSS NIRSystems, Silver Spring, MD, USA); (2) a Perten DA-7000 diode-array 116 

spectrophotometer (Perten Instruments, North America, Inc., Springfield, IL, USA); and 117 

(3) a handheld micro-electro-mechanical system (MEMS) spectrophotometer (Phazir 118 

2400, Polychromix, Inc., Wilmington, MA, USA). The main features of these 119 

instruments are listed in Table 1, the major difference between the three being the 120 

measuring principle involved. 121 

The FNS-6500 scanning monochromator was interfaced to a remote reflectance-122 

interactance fiber optic probe (NR-6539-A) with a 50 * 6 mm window. Each spear 123 

portion to be analyzed was hand-placed in the probe, ensuring direct contact between 124 

the spear section and the probe. This spectrophotometer works in the spectral range 400-125 

2500 nm, taking readings at 2 nm intervals. Two measurements were made per section: 126 

the first at a random location representing the whole of the area analyzed (6 cm), and 127 

the second after rotating that area of the spear through 180º. Two spectra were collected 128 

for the three sections analyzed (tip, middle portion and base), and later averaged to 129 

provide a mean spectrum for that section. 130 

NIR spectra of intact spear sections were also captured using a Perten DA-7000 131 

parallel diode-array spectrophotometer working in the spectral range 400-1700 nm, and 132 

scanning at 5 nm intervals. This instrument does not use any moving parts in the optics, 133 

making it very stable and suitable for on-line measurement, providing fast noncontact 134 

measurement (1-3 s). The up-view mode was used for analysis; samples were placed 135 

directly on a round quartz window (diameter 127 mm); the surface was reduced to 50 * 136 

6 mm in order to adapt to sample measurements. Two separate spectral measurements 137 

were made on each portion of the spear analyzed, rotating the sample through 180º after 138 

the first measurement. The two spectra were then averaged to provide a mean spectrum 139 

for each zone.  140 
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The Phazir 2400 is an integrated near-infrared handheld analyzer based on 141 

MEMS technology that incorporates all the essential components to deliver in situ 142 

applications as well as laboratory applications during postharvest storage (Geller, 2007). 143 

The instrument has no moving parts. The spectrometer scans at 8 nm intervals (pixel 144 

resolution 8 nm, optical resolution 12 nm), across a range of NIR wavelengths (1600-145 

2400 nm). Two spectral measurements were made with this instrument, the first at a 146 

random location in the center of the analyzed area, and the second after rotating that 147 

area of the spear through 180º, with a measurement time of 1-2 s. The two spectra were 148 

averaged to provide a mean spectrum for each zone.  149 

Texture Measurement 150 

After spectrum collection, maximum shear force and cutting energy were measured 151 

using conventional destructive techniques. 152 

Texture measurements were made individually at three points on the spear (3, 9 153 

and 15 cm from the tip), following the method recommended by Wiley et al. (1956). 154 

The Warner-Bratzler cutting cell was used in conjunction with an Instron Universal 155 

Texturometer (Model 3343 Single Column, Instron Corporation, Norwood, MA, USA), 156 

fitted with a 1000 N load cell, selecting a constant displacement speed of 20 mm/min 157 

for all measurements.  158 

The study parameters, maximum shear force (N) and cutting energy (J), were 159 

measured and recorded using Instron Bluehill 2 Software version 2.5 (Instron 160 

Corporation, Norwood, MA, USA). Changes in these parameters in each spear section 161 

were monitored during storage; a total of 900 measurements were made for each 162 

parameter.  163 

Spectral Data Processing 164 
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The WinISI software package v. 1.50 (Infrasoft International, Port Matilda, PA, USA) 165 

was used for the chemometric treatment of data (ISI, 2000). 166 

Prior to performing NIRS calibrations, the CENTER algorithm included in the 167 

WinISI software package was used to analyze the structure and spectral variability of 168 

the sample population. This algorithm performs an initial principal component analysis 169 

(PCA) and then calculates the distance of each sample (spectrum) from the center of the 170 

population in an n-dimensional space, using the Mahalanobis distance (GH); samples 171 

with a statistical value greater than 3 were considered outliers or anomalous spectra 172 

(Shenk and Westerhaus 1991, 1995a).  173 

This algorithm was applied in the following near-infrared spectral regions: 1100-174 

2200 nm (FNS-6500), 1100-1650 nm (Perten DA-7000) and 1600-2400 nm (Phazir 175 

2400). A combined Standard Normal Variate (SNV) and Detrending (DT) method was 176 

used for scatter correction (Barnes et al., 1989), together with the first-derivative 177 

treatment “1,5,5,1”, where the first digit is the number of the derivative, the second is 178 

the gap over which the derivative is calculated, the third is the number of data points in 179 

a running average or smoothing, and the fourth is the second smoothing (Shenk and 180 

Westerhaus 1995b). 181 

The initial sample set comprised all samples from all three spear sections 182 

analyzed. Having ordered the sample set by spectral distances (from smallest to greatest 183 

distance from the center), those displaying GH values > 3 were discarded as outliers (N 184 

= 7, N = 33, and N = 32 for the FNS-6500, Perten DA-7000 and Phazir 2400 185 

spectrophotometers, respectively). After discarding outliers from the sample set for each 186 

instrument, each initial sample set comprised 830 samples, since 1 sample was 187 

identified as an outlier for all three instruments. Subsequently, the structured sample set 188 

for the Phazir 2400 was used as the basis for establishing the calibration and validation 189 
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sets to be used in constructing predictive models. One out of every 6 samples in the 190 

initial set (N = 139 samples; 16.6% of the population) was selected for the validation 191 

set, the remainder forming the calibration set (N = 691). The samples comprising the 192 

calibration and validation sets (Table 2) were the same for all three instruments, in order 193 

to facilitate subsequent comparison of results. 194 

NIRS calibration models were then constructed to predict maximum shear force 195 

and cutting energy, using MPLS as the linear regression strategy (Shenk and 196 

Westerhaus 1995a). All regression equations were obtained using SNV-DT for scatter 197 

correction (Barnes et al., 1989). Four different mathematical derivative treatments were 198 

tested: 1,5,5,1; 2,5,5,1; 1,10,5,1 and 2,10,5,1 (Shenk and Westerhaus 1995b). 199 

The following spectral regions were analyzed in order to construct texture-200 

prediction models using MPLS: 500-2200 nm, 800-1650 nm, 800-2200 nm, 1100-1650 201 

nm and 1100-2200 nm (FNS-6500); 515-1650 nm, 800-1650 nm and 1100-1650 nm 202 

(Perten DA-7000) and 1600-2400 nm (Phazir 2400). In order to eliminate spectral noise 203 

at the beginning and end of the spectral range, regions between 400-500 nm and 2200-204 

2500 nm for the FNS-6500 instrument and between 400-515 nm and 1650-1700 nm for 205 

the Perten DA-7000 were discarded. 206 

In the construction of calibration models using MPLS regression, six cross-207 

validation steps were included in the process in order to select the optimum number of 208 

factors and avoid overfitting. Finally, validation errors were combined to obtain a 209 

standard error of cross validation (SECV) (Shenk and Westerhaus 1996). 210 

The statistics used to select the best equations using MPLS were: the coefficient 211 

of determination for calibration (R2), the standard error of calibration (SEC), the 212 

coefficient of determination for cross validation (r2), the standard error of cross 213 

validation (SECV) and the coefficient of variation (CV), defined as the ratio between 214 
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SECV and the mean value of the reference data in the calibration set. Furthermore, the 215 

Residual Predictive Deviation (RPD) was calculated as the ratio of the standard 216 

deviation (SD) of the reference data to the SECV. This statistic, together with the CV, 217 

enables SECV to be standardized, facilitating the comparison of results obtained with 218 

sets of different means (Williams 2001). 219 

The best predictive models obtained, selected by statistical criteria, were 220 

subsequently subjected to external validation following the protocol outlined by Shenk,  221 

et al., (2001). 222 

The LOCAL algorithm (Shenk et al. 1997) was also applied as a non-linear 223 

regression strategy to predict the two texture-related parameters, using the same spectral 224 

regions and signal pretreatments indicated for MPLS regression.  225 

The LOCAL algorithm is a procedure designed to locate and select, from within 226 

a large spectral database (based on the calibration set), samples with a spectrum similar 227 

to that of the unknown sample to be predicted. Selection is based on the coefficient of 228 

correlation between the spectrum of the unknown sample and each of the sample spectra 229 

forming the spectral library. The selected samples are then used as a calibration set to 230 

develop specific calibration equations, based on PLS linear regression, for predicting 231 

the unknown sample (Shenk et al. 1997). 232 

The configuration of the LOCAL algorithm was optimized by varying the 233 

maximum number of samples selected for calibrations (k) – 70, 140, 210, 280 and 350 – 234 

and by setting at 15 the maximum number of PLS terms. Finally, the number of PLS 235 

factors discarded was set to the first three.  236 

The effect of the different settings on the performance of LOCAL was evaluated 237 

by comparing the standard error of prediction (SEP), the coefficient of regression for 238 

external validation (r2), the bias and the standard error of prediction corrected for bias or 239 
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SEP(c). The accuracy of the models obtained using the MPLS and LOCAL algorithms 240 

was then compared on the basis of the values obtained for the statistics SEP, SEP(c), r2 241 

and bias. 242 

Results and Discussion  243 

Prediction of Quality Parameters in Green Asparagus by MPLS Regression 244 

The best calibration models obtained for predicting maximum shear force and cutting 245 

energy using each of the three instruments are shown in Tables 3 and 4.  246 

As Table 3 shows, all three instruments displayed fair predictive capacity for 247 

maximum shear force. Results for the FNS-6500 and Perten DA-7000 instruments were 248 

very similar (r2 = 0.51; SECV = 5.65 and 5.71 N, respectively), scanning over the range 249 

1100-1650 nm with the monochromator and over the range 515-1650 nm with the 250 

diode-array instrument; in both cases, results were slightly better than those obtained 251 

using the MEMS-based instrument (r2 = 0.38; SECV = 6.48 N) over the spectral range 252 

1600-2400 nm. The first derivative provided the best results for predicting maximum 253 

shear force for the diode-array and MEMS instruments, while for the monochromator 254 

the best results were obtained with the second derivative. 255 

In terms of the recommendations made by Williams (2001), the predictive 256 

capacity of the models constructed for maximum shear force (r2 = 0.51), may be 257 

considered sufficient to classify values for this parameters as high, medium or low using 258 

the Perten DA-7000 and FOSS-6500 instruments. Models constructed using the Phazir-259 

2400 (r2 = 0.38) enabled values to be classed as either high or low. The difference in 260 

predictive capacity between the first two spectrophotometers and the hand-held 261 

instrument may reflect differences in measuring area; the MEMS device measures an 262 

area of only around 2 mm, whereas both the monochromator and the diode-array device 263 

perform a scan of the whole sample.  264 
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RPD values obtained for the models constructed using all three instruments were 265 

poorer than those reported by Pérez-Marín et al. (2002) using a monochromator and 266 

dried, ground samples from each spear section (RPD = 2.47), probably because this 267 

method of presentation reduces sample water content, thereby removing the main source 268 

of error in NIRS measurements on asparagus due to the fact that moisture content 269 

hampers the capture of spectra relevant for other attributes of interest (Polesello and 270 

Giangiacomo 1981). Presentation of the sample in powdered form also removes the 271 

difficulties associated with spear morphology, since the presence of bracts hinders 272 

sample-instrument interaction. Nonetheless, the  lower predictive capacity of the models 273 

obtained here is offset by greater speed of analysis due to use of the intact product, and 274 

also by the non-destructive nature of the method, allowing wider sampling of all 275 

product batches. The RPD values recorded here were also slightly worse than those 276 

obtained by Flores-Rojas et al. (2009) in an analysis of the same intact spear sections 277 

(RPD = 1.74 and 1.49 using the monochromator and the diode-array instrument, 278 

respectively), although the range of the calibrations sets used by these authors was 279 

greater (13.58-90.93 N for the monochromator and 13.58-79.61 N for the diode-array 280 

device). However, their models were less accurate, with SECV values of 7.81 N and 281 

8.43 N, for the monochromator and the diode-array instrument, respectively. 282 

The predictive capacity of the models constructed to predict cutting energy 283 

(Table 4) using the monochromator (500-2200 nm) and the diode-array 284 

spectrophotometer (515-1650 nm) may be considered good (r2 = 0.72 and 0.71; SECV = 285 

0.03 J for both instruments), whilst the models obtained using the MEMS-based device 286 

(1600-2400 nm) would enable cutting energy values for spear sections to be classified 287 

as high, medium or low (r2 = 0.52; SECV = 0.04 J), following Williams’ 288 

recommendations (2001). Using the monochromator and the MEMS-based device, the 289 
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best results for predicting cutting energy were obtained using the first derivative, whilst 290 

with the diode-array spectrophotometer the best results were achieved using the second 291 

derivative of the spectrum. 292 

Other authors report slightly better results. In the study cited earlier, Pérez-Marín 293 

et al. (2002) recorded an RPD of 2.54, though using powdered samples, a form of 294 

presentation which – while ensuring a more homogeneous sample – requires time-295 

consuming sample preprocessing, and is unsuited for in situ or on-line use. In a later 296 

study, Flores-Rojas et al. (2009) analyzed cutting energy in different sections of intact 297 

green asparagus spears using two NIRS instruments, reporting a slightly poorer 298 

predictive capacity (RPD = 1.95 for the monochromator; RPD = 1.57 for the diode-299 

array spectrophotometer). They also reported, for both instruments, SECV values (0.06 300 

J and 0.07 J, respectively) higher than those obtained in the present study. 301 

Subsequent evaluation of the separate calibrations obtained for each of the three 302 

spear sections (tip, middle portion and base), and for the combined calibration for tip + 303 

middle portion, using MPLS regression with all three instruments tested (data not 304 

shown), confirmed that the predictive capacity of the calibration models obtained 305 

declined considerably when the sample set was restricted to one or two of the three 306 

spear portions, probably due to the consequently marked reduction in range for the 307 

parameter tested.  308 

Redefinition of Validation Sets 309 

Although initially, and following application of the CENTER algorithm, calibration sets 310 

for maximum shear force covered a range from 12.23 to 107.40 N in the three NIRS 311 

devices (Table 2), when constructing calibration models using MPLS regression those 312 

samples presenting values of over 52.46 N in the monochromator instrument and 54.45 313 

N in the diode-array spectrophotometer and MEMS device were classed as outliers and 314 
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removed from the final calibration set. The final range for this parameter was thus 315 

reduced; as comparison of Tables 2 and 3 confirms, the range of the external validation 316 

set initially selected using the CENTER algorithm was wider than that of the final 317 

calibration set. Therefore, 6 samples were removed from the external validation set in 318 

the three instruments, avoiding the extrapolation of the models developed.  319 

For cutting energy parameter, the initial calibration sets covered the range 0.05-320 

0.57 J for the three instruments tested (Table 2); this variability prompted a CV of 50%. 321 

However, when constructing calibration models using MPLS regression, samples with 322 

values exceeding 0.33 J, 0.34 J, and 0.31 J in the monochromator, diode-array and 323 

MEMS instruments, respectively, were classed as outliers and discarded; as a result, the 324 

range of the external validation set initially selected was wider than that of the final 325 

calibration set.  326 

This meant that and for the same reason as mentioned above, again, 5 samples 327 

were eliminated in the external validation set in the monochromator (values of between 328 

0.34 J and 0.45 J); 4 samples in the diode-array device (0.38 J < cutting energy < 0.45 J) 329 

and 7 samples in the MEMS instrument (0.32 J < cutting energy < 0.45 J).  330 

Prediction of Quality Parameters in Green Asparagus by LOCAL Algorithm. 331 

Comparison of LOCAL vs. MPLS 332 

SEP(c) values for the best models obtained for predicting maximum shear force and 333 

cutting energy using the LOCAL algorithm with all three spectrophotometers and the 334 

different values tested for maximum number of calibration samples (k), are shown in 335 

Figure 1. 336 

For maximum shear force, the lowest values for SEP(c) obtained with the 337 

monochromator (SEP(c) = 5.84 N) and the diode-array spectrophotometer (SEP(c) = 338 

5.79 N) were recorded using k = 280 samples, whereas the lowest SEP(c) value for the 339 
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MEMS device (6.27 N) was obtained when k = 210 samples. Moreover, the second 340 

derivative of the spectrum provided the best results in the monochromator; by contrast, 341 

the lowest SEP(c) value was obtained using the first spectral derivative in the diode-342 

array spectrophotometer and MEMS device. Finally, the whole spectral range was used 343 

for all the instruments tested. 344 

For cutting energy, the lowest SEP(c) values were obtained using the second 345 

derivative in the three instruments. Furthermore, both instruments, monochromator and 346 

diode-array spectrophotometer, provided the lowest SEP(c) (0.041 J and 0.043 J, 347 

respectively) over the spectral range 800-1650 nm; while for the MEMS device the best 348 

SEP(c) (0.044 J) was recorded scanning over the whole range. Finally, the number of 349 

samples used in LOCAL algorithm (k) was 350, 140 and 210 for the monochromator, 350 

diode-array spectrophotometer and MEMS device, respectively. 351 

The predictive capacity of NIRS models constructed for maximum shear force 352 

and cutting energy using the MPLS and LOCAL regression algorithms for all three 353 

instruments is shown in Tables 5 and 6. In all cases, application of the LOCAL 354 

algorithm instead of MPLS regression improved the predictive capacity of the models 355 

for maximum shear force. For cutting energy, models constructed using LOCAL non-356 

linear regression also displayed, for diode-array spectrophotometer and MEMS device, 357 

the same or greater predictive capacity than those obtained using the MPLS regression. 358 

However, a slightly worse predictive capacity was obtained when the spectral range 359 

1100-1650 nm is used in the monochromator instrument, whereas the remaining 360 

spectral ranges tested in this instrument increased the predictive capacity in relation 361 

with MPLS regression.  362 
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The quality of the predictions for maximum shear force obtained with the 363 

external validation set using MPLS regression may be classed as poor, particularly in 364 

view of the low r2 values obtained (Table 5).  365 

Application of the LOCAL algorithm increased the values for r2 (by 24% for the 366 

monochromator, 16% for the diode-array device and 56% for the MEMS instrument) 367 

compared to those obtained using MPLS regression, and enabled prediction of all the 368 

samples comprising the validation set. As well, the SEP(c) values were reduced (by 369 

11% for the monochromator, 8% for the diode-array device and 14% for the MEMS 370 

instrument) by the application of the LOCAL algorithm. These results were in 371 

accordance with Shenk et al., (2001) who suggested that application of the LOCAL 372 

algorithm improved the predictive ability of models by around 10–30% compared to the 373 

MPLS regression. 374 

The quality of the predictions for cutting energy obtained with the external 375 

validation set using MPLS regression (Table 6) may be classed as fair (r2 ≥ 0.6), in 376 

terms of the recommendations of Shenk et al. (2001), for the monochromator; the diode-377 

array device and the MEMS instrument yielded r2 values of 0.58 and 0.50, respectively. 378 

Application of the LOCAL algorithm enabled prediction of all the same samples 379 

that were validated with MPLS regression in each instrument, and increased the value 380 

of r2 for the models obtained using the monochromator and the diode-array instrument 381 

by 3% and the MEMS device by 6%. SEP(c) values were reduced by 3% when the 382 

LOCAL algorithm was used in the three instruments tested. 383 

Most of the physical outliers discarded (75% for maximum shear force; 60% for 384 

cutting energy) during construction of calibration models using MPLS regression 385 

belonged – for both texture-related parameters – to the base section of the spear kept in 386 

refrigerated storage for at least 14 days. It should be noted that postharvest storage 387 
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prompts an increase in spear resistance and hardness, mainly apparent in the lower 388 

sections of the spear (Rodríguez-Arcos et al. 2002a; Rodríguez et al. 2004). Because of 389 

this, the coefficient of variation for the calibration set declined by a mean 52% for 390 

maximum shear force and a mean 57% for cutting energy; thus, the models constructed 391 

used a much narrower final range (see Tables 2, 3 and 4).  392 

As indicated earlier, samples displaying maximum shear force of over 52-55 N 393 

were generally discarded for all three NIRS instruments during the calibration 394 

procedure, as were samples with cutting energy values greater than 0.31-0.34 J. This 395 

reduction in range led to a decline in the mean and the standard deviation for the initial 396 

calibration sets (mean = 32.73 N; SD = 12.63 for maximum shear force; mean = 0.16 J; 397 

SD = 0.08 for cutting energy) with respect to the final values for the best obtained using 398 

MPLS regression (mean = 30.60 N; SD = 8.05 for maximum shear force; mean = 0.14 399 

J; SD = 0.06 for cutting energy), indicating reduced variability within sets. 400 

Williams (2001) notes that the value of the prediction error will be higher if 401 

most samples are clustered around the mean, which would account for the results 402 

obtained here for maximum shear force and cutting energy using the MPLS algorithm.  403 

It is worth stressing that when the LOCAL algorithm was applied for the 404 

prediction of external validation sets, the best models for predicting maximum shear 405 

force were obtained using a k value of 280 samples for the monochromator and the 406 

diode-array spectrophotometer and k  = 210 samples for the MEMS device, i.e. using a 407 

maximum of only 210 and 280 samples for each calibration, compared with the 641, 408 

644 and 645 samples used for each instrument with MPLS regression; the best models 409 

for predicting cutting energy were again obtained with a maximum of 350 samples for 410 

the monochromator, 140 samples for the diode-array spectrophotometer and 210 411 

samples for the MEMS device, compared with the 624, 633 and 618 used with the 412 
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MPLS algorithm. These results confirm the findings reported by Sánchez et al. (2011), 413 

who note that the population distribution for texture-related parameters, with a large 414 

number of redundant samples in the intermediate region of the range, may have an 415 

adverse effect on the model’s predictive capacity using MPLS.  416 

Conclusions  417 

The results of this study, which used three NIR spectrophotometers with different 418 

working principles and measurement ranges and two different regression strategies, 419 

confirmed the viability of NIRS technology for the measurement of texture-related 420 

quality parameters in intact green asparagus. Application of the LOCAL algorithm 421 

proved particularly valuable for predicting maximum shear force and cutting energy in 422 

all three NIRS instruments tested. Although the best predictive models were obtained 423 

with the monochromator and the diode-array instrument, the MEMS-based 424 

spectrophotometer proved to be a viable option for evaluating texture-related quality in 425 

intact green asparagus. The diode-array and MEMS-based spectrophotometers have a 426 

promising future as part of asparagus quality-control programs, in that they are suitable 427 

for use both in the field and by the processing industry. 428 
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Table 1 Basic technical characteristics of three spectrophotometers: monochromator 508 

(M), diode array (DA) and MEMS 509 

Property Instrument 

M: FNS-6500 DA: Perten DA-7000 MEMS: Phazir-2400 

Detector type Silicon, 400–1100 nm; lead sulfide, 

1100–2500 nm 

76-channel silicon detector 400-950 

nm; a 76-channel Indium-Gallium-

Arsenide detector, 950-1700 nm 

single-element InGaAs 

detector, 1600-2400 nm 

Wavelength range (nm) 400-2500 400-1700 1600-2400 

Spectral data rate 1.8 scans s-1 30 scans s-1 1-2 scans s-1 

Dispersion Pre Post Post 

Light source Full spectrum Full spectrum Full spectrum 

Analysis mode Interactance-Reflectance Reflectance Reflectance 

 510 

511 
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Table 2 Statistical analysis of calibration and validation sample sets, i.e., data ranges, 512 

means and standard deviations (SD) and coefficients of variation (CV) for the three 513 

instruments studied 514 

Parameter Set Number Range Mean SD CV (%) 

Maximum shear force (N) Calibration 691 12.23-107.40 32.73 12.63 38.59 

Validation 139 15.58-69.61 31.83 10.56 33.18 

Cutting energy (J) Calibration 691 0.05-0.57 0.16 0.08 50.00 

Validation 139 0.05-0.45 0.16 0.08 50.00 

 515 

 516 

 517 

518 
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 519 

Table 3 Calibration statistics for the best models obtained for predicting maximum 520 

shear force (N) in intact green asparagus using MPLS regression for different 521 

instruments and spectral ranges studied.  522 

Instrument Spectral 
range (nm) 

Number Mathematic 
treatment 

Factors Range Mean SD SEC R2 SECV r2 RPD CV (%) 

FNS-6500 500-2200 645 1,10,5,1 5 13.33-54.45 30.71 8.26 5.51 0.55 5.74 0.52 1.44 18.69 

 800-1650 640 2,10,5,1 4 13.33-54.45 30.58 8.09 5.48 0.54 5.65 0.51 1.43 18.48 

 800-2200 636 2,10,5,1 2 12.23-54.45 30.54 8.04 5.62 0.51 5.71 0.50 1.41 18.70 

 1100-1650 641 2,10,5,1 6 13.33-52.46 30.60 8.05 5.36 0.56 5.65 0.51 1.42 18.46** 

 1100-2200 644 1,10,5,1 6 12.23-52.46 30.57 8.09 5.47 0.54 5.76 0.49 1.40 18.84 

Perten DA-
7000 

515-1650 644 1,5,5,1 6 13.33-54.45 30.69 8.18 5.51 0.55 5.71 0.51 1.42 18.60* 

850-1650 646 1,5,5,1 5 13.33-54.45 30.69 8.16 5.64 0.52 5.77 0.50 1.43 18.80 

1100-1650 644 1,5,5,1 5 13.33-56.87 30.76 8.25 5.61 0.54 5.74 0.52 1.44 18.66 

Phazir 2400 1600-2400 645 1,5,5,1 2 12.23-54.45 30.72 8.23 6.44 0.39 6.48 0.38 1.27 21.09* 

* Best equation. 523 
** The best of the best equations for the instruments studied. 524 
 525 

526 
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 527 

Table 4 Calibration statistics for the best models obtained for predicting cutting energy 528 

(J) in intact green asparagus using MPLS regression for the three different instruments 529 

and the spectral ranges studied  530 

Instrument Spectral 
range (nm) 

Number Mathematic 
treatment 

Factors Range Mean SD SEC R2 SECV r2 RPD CV (%) 

FNS-6500 500-2200 624 1,10,5,1 9 0.05-0.33 0.14 0.06 0.03 0.75 0.03 0.72 2.00 21.43** 

 800-1650 636 1,5,5,1 8 0.05-0.33 0.14 0.06 0.03 0.72 0.03 0.69 2.00 21.43 

 800-2200 632 1,10,5,1 6 0.05-0.33 0.14 0.06 0.03 0.72 0.03 0.69 2.00 21.43 

 1100-1650 647 1,5,5,1 6 0.05-0.33 0.14 0.06 0.04 0.64 0.04 0.62 1.50 28.57 

 1100-2200 628 1,5,5,1 7 0.05-0.33 0.14 0.06 0.03 0.74 0.03 0.68 2.00 21.43 

Perten DA-
7000 

515-1650 633 2,5,5,1 8 0.05-0.34 0.14 0.06 0.03 0.74 0.03 0.71 2.00 21.43* 

800-1650 628 2,5,5,1 7 0.05-0.34 0.14 0.06 0.03 0.70 0.03 0.68 2.00 21.43 

1100-1650 618 2,10,5,1 11 0.05-0.33 0.14 0.06 0.03 0.70 0.03 0.68 2.00 21.43 

Phazir 2400 1600-2400 618 1,10,5,1 6 0.05-0.31 0.14 0.05 0.04 0.53 0.04 0.52 1.25 28.57* 

* Best equation. 531 
** The best of the best equations for the instruments studied. 532 

533 
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Table 5 Validation statistics for the best models for maximum shear force (N) using 534 

MPLS and LOCAL algorithms for the three instruments studied  535 

Instrument Method Mathematic 
treatment 

Spectral range 
(nm) 

Factors SEP SEP (c) Bias r2 Slope 

FNS-6500 MPLS  2,10,5,1 1100-1650 6 6.54 6.53 -0.66 0.45a 0.99 

 
LOCAL 

(kb = 280) 
2,10,5,1 500-2200 15 (-3) 6.08 5.84 -1.76 0.56a 0.98* 

 (k = 350) 1,10,5,1 800-1650 15 (-3) 6.24 6.09 -1.44 0.52a 1.03 

 (k = 350) 1,10,5,1 800-2200 15 (-3) 6.33 6.15 -1.57 0.51a 1.00 

 (k = 210) 2,10,5,1 1100-1650 15 (-3) 6.49 6.27 -1.75 0.49a 0.94 

 (k = 280) 2,10,5,1 1100-2200 15 (-3) 6.54 6.36 -1.61 0.48a 0.94 

Perten DA-
7000 

MPLS 1,5,5,1 515-1650 6 6.36 6.26 -1.26 0.49a 1.04 

LOCAL 

(k = 280) 
1,10,5,1 515-1650 15 (-3) 6.04 5.79 -1.78 0.57a 1.09** 

(k = 350) 1,5,5,1 800-1650 15 (-3) 6.09 5.89 -1.63 0.56a 1.11 

(k = 350) 2,5,5,1 1100-1650 15 (-3) 6.32 6.13 -1.62 0.51a 1.03 

Phazir 2400 MPLS 1,5,5,1 1600-2400 2 7.25 7.26 -0.51 0.32a 0.99 

 
LOCAL 

(k = 210) 
1,10,5,1 1600-2400 15 (-3) 6.37 6.27 -1.26 0.50a 0.93* 

* Best equation for LOCAL algorithm in the instruments studied. 536 
** The best of the best equations for the instruments studied and the regression algorithms evaluated 537 
a Values exceeding control limits described in Materials and Methods Section. 538 
b Number of samples used in LOCAL algorithm. 539 

 540 

 541 

542 
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Table 6 Validation statistics for the best models for cutting energy (J) using MPLS and 543 

LOCAL algorithms for the three instruments studied  544 

Instrument Method Mathematic 
treatment 

Spectral range 
(nm) 

Factors SEP SEP (c) Bias r2 Slope 

FNS-6500 MPLS 1,10,5,1 500-2200 9 0.042 0.042a 0.001 0.60 1.01 

 
LOCAL  

(kb = 350) 
1,10,5,1 500-2200 15 (-3) 0.042 0.041 -0.009 0.62 0.96 

 (k = 350) 2,5,5,1 800-1650 15 (-3) 0.042 0.041 -0.008 0.62 0.99** 

 (k = 350) 1,10,5,1 800-2200 15 (-3) 0.042 0.042 -0.009 0.61 0.94 

 (k = 280) 2,5,5,1 1100-1650 15 (-3) 0.043 0.043 -0.008 0.59a 0.99 

 (k = 350) 1,10,5,1 1100-2200 15 (-3) 0.042 0.042 -0.007 0.61 0.92 

Perten DA-
7000 

MPLS 2,5,5,1 515-1650 8 0.044 0.044a 0.002 0.58a 1.07 

LOCAL 

(k = 280) 
2,5,5,1 515-1650 15 (-3) 0.043 0.044 -0.002 0.60 1.15 

(k = 140) 2,5,5,1 800-1650 15 (-3) 0.044 0.043 -0.005 0.60 1.07* 

(k = 280) 2,5,5,1 1100-1650 15 (-3) 0.045 0.045 -0.002 0.58 1.16 

Phazir 2400 MPLS 1,10,5,1 1600-2400 6 0.045 0.045 0.006 0.50a 1.13 

 
LOCAL 

(k = 210) 
2,10,5,1 1600-2400 15 (-3) 0.044 0.044 -0.006 0.53a 0.88a* 

* Best equation for LOCAL algorithm in the instruments studied. 545 
** The best of the best equations for the instruments studied and the regression algorithms evaluated 546 
a Values exceeding control limits described in Materials and Methods Section. 547 
b Number of samples used in LOCAL algorithm. 548 
 549 
 550 

 551 

552 
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Fig. 1. Best SEP(c) values for the prediction of texture parameters in intact asparagus 553 

using the LOCAL algorithm for the different selected sample values (k), the best 554 

mathematical treatments and spectral ranges for the three instruments studied  555 

 556 

 557 

 558 

 


