
1 
 

Running Title: Orange ripening and at harvest monitoring by NIRS 

 

Application of NIRS for non-destructive measurement of quality 

parameters in intact oranges during on-tree ripening and at harvest 

 

María-Teresa Sánchez a,*, María-José De la Haba a, Ildefonso Serrano a, Dolores 

Pérez-Marín b,* 

 

a Department of Bromatology and Food Technology, University of Cordoba, Campus de 

Rabanales, 14071 Cordoba, Spain 

b Department of Animal Production, University of Cordoba, Campus de Rabanales, 

14071 Cordoba, Spain. 

  

 

 

* Corresponding authors. Tel.: +34 957 212576; fax: +34 957 212000. 

E-mail addresses: teresa.sanchez@uco.es (M.-T. Sánchez), dcperez@uco.es (D. Pérez-

Marín). 



2 
 

 
Abstract 

External and internal quality parameters were measured in oranges (Citrus sinensis, (L.) 

Osbeck cv. ‘Powell Summer Navel’) during on-tree ripening and at harvest using NIR 

spectroscopy. The performance of two NIRS instruments was evaluated: a handheld 

micro-electro-mechanical system (MEMS) spectrometer working in the 1,600–2,400 

nm range; and a diode-array Vis–NIR spectrometer working in the 380–1,700 nm range. 

Spectra and analytical data were used to construct MPLS prediction models for 

quantifying weight, size (equatorial and axial diameters), color (L*, a*, b*, C*, h*, 

color index), texture (firmness, maximum penetration force), yield (pericarp thickness, 

juice weight, juice content) and chemical parameters (soluble solid content, pH, 

titratable acidity, maturity index). Both instruments yielded promising results for on-

tree and at-harvest quality measurements, but models constructed using the diode-array 

instrument provided greater predictive capacity, particularly for fruit size (equatorial 

and axial diameters) and total soluble solids content. Subsequent evaluation of the 

LOCAL algorithm revealed that it increased the predictive capacity of models 

constructed for all the main parameters tested. These results confirm that non-invasive 

NIRS technology can be used to simultaneously evaluate external and internal quality 

parameters in intact oranges both during on-tree ripening and at harvest, thus making it 

easier for farmers to monitor the ripening process and also to optimize harvest timing in 

order to meet the demands of the citrus-fruit industry. 

Keywords Near-IR spectroscopy, Portable sensors, MEMS technology, Orange, 

Quality parameters, On-tree, At harvest. 
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Introduction 

Nowadays, the fruit industry has to do everything possible to ensure the effective 

management of food quality and safety. As a result, traceability has become a key issue 

(Zhang et al. 2011a, b). 

Traceability in oranges starts with on-tree visual inspection by the farmer, based 

solely on fruit surface color, with a view to ascertaining ripeness status and optimizing 

the harvest date (Agustí 2003). However, this method is not particularly reliable, since 

fruit color may be influenced by a range of factors, and especially by water availability; 

as a result, fruit may be harvested before it is commercially ripe. Periods of drought, 

however short, not only give rise to smaller oranges but also bring forward external 

coloring whilst delaying internal ripening (Pérez-Pérez et al. 2008).  

Within the orange handling and processing industry, the next check takes place 

after harvest, when a small number of samples from incoming batches – indeed, a 

negligible number in terms of overall throughput – are subjected to quality control, 

using destructive analytical methods to measure two flavor parameters: soluble solid 

content (SSC) and titratable acidity (TA). The ratio of one to the other, known as the 

ripeness index (SSC/TA), is the main indicator of fruit ripeness and juiciness (Zude et 

al. 2008; Liu et al. 2010). Often, however, to save both costs and time, fruit quality 

assessment tends to be based solely on soluble solid content (Zude et al. 2008).  

There is therefore a considerable need – both in the production sector and in the 

citrus-fruit industry – for techniques enabling the rapid, non-destructive analysis of 

individual fruits, with a view to helping the farmer make harvesting decisions and at the 

same time enabling the processing industry to ensure consumer satisfaction.  

Near-infrared reflectance spectroscopy (NIRS) is ideally suited to the 

requirements of both farmers and the fruit industry: it is not only non-destructive, rapid 
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and accurate, but also economical, flexible and versatile; sample presentation is simple 

and data (spectra) are collected very rapidly. Moreover, recent advances in 

instrumentation have enabled measurements to be made in situ, both on the tree and on 

the production line, enabling various external and internal fruit quality parameters to be 

measured simultaneously (Pérez-Marín et al. 2009, 2010, 2011). 

Although a number of papers address the application of NIRS to quality control 

in fruit (e.g. Nicolaï et al. 2007; Saranwong and Kawano 2007; Sánchez and Pérez-

Marín 2011), few studies have focused specifically on the use of this technology with 

whole intact oranges, perhaps due to the complexities involved. The parameters most 

commonly measured to date are soluble solids content, firmness and titratable acidity 

(Miller and Zude-Sasse 2004; Lu et al. 2006; Cayuela 2008; Cayuela and Weilland 

2010; Liu et al. 2010). However, no previously-published research has dealt with the 

prediction of quality parameters in unharvested oranges. 

NIR spectroscopy is particularly well-suited to the monitoring of the on-tree 

ripening process, in that it enables changes in the various quality parameters to be 

charted simultaneously and non-destructively, thus ensuring that oranges are harvested 

at the optimum stage of ripening, depending on the industrial use to which they are 

subsequently to be put. 

This study sought to assess the suitability of NIRS technology for predicting 

major external and internal quality parameters in intact oranges (weight, equatorial and 

axial diameters, color, firmness, maximum penetration force, pericarp thickness, juice 

weight, juice content, soluble solids content, pH, titratable acidity, and maturity index) 

during on-tree ripening and at harvest, comparing the quality of the prediction models 

obtained using two NIRS instruments: a hand-held MEMS-based device ideal for on-
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tree measurement of intact fruits; and a diode-array device well suited for at-line 

monitoring of incoming oranges by the citrus-fruit industry. 

Materials and Methods 

Orange Sampling 

The initial sample set comprised 192 oranges (Citrus sinensis, (L.) Osbeck cv. ‘Powell 

Summer Navel’) grown on a commercial plantation near the village of La Campana 

(Seville, Spain) under four different irrigation regimes.  

Each experimental plot comprised 3 rows of four trees, with four repetitions for 

each irrigation regime; oranges were monitored on the two central trees in each plot. 

Thus ripening was monitored on 8 trees for each of the 4 irrigation regimes, giving a 

total of 32 trees.  

A total of 6 oranges were labeled on each of the 32 trees: one for each of the 

four possible orientations (north, south, east and west) and one for each of two heights 

on the tree (1.25 and 1.75 m), thus giving a total of 192 oranges. However, in the course 

of the study, one ripe orange dropped off the tree, and was thus excluded. The final 

sample set thus comprised 191 oranges. 

Oranges were harvested on three different dates in 2010: 9 March (48 oranges), 

16 March (48 oranges) and finally 22 March, by which time commercial ripeness had 

been attained (95 oranges).  

For the first harvesting date, oranges were selected using a pre-arranged 

strategy: two oranges were picked from the first tree and one from the second for each 

repetition of each irrigation regime. For the second date, the reverse process was used, 

i.e. one orange from the first tree and two from the second, etc.; for the third harvesting 

date, all the labeled oranges remaining were harvested. 
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Harvested oranges were kept in refrigerated storage at 5ºC and 90% RH until the 

following day, when laboratory testing was performed. Prior to each test, oranges were 

allowed to reach room temperature. All tests were performed at 20ºC. 

NIR Spectrum Acquisition 

Spectra were collected on all fruits in reflectance mode (log 1/R) using: (1) a 

handheld MEMS spectrophotometer (Phazir 2400, Polychromix, Inc., Wilmington, MA, 

USA), and (2) a diode-array Vis–NIR spectrophotometer (Corona 45 VIS/NIR, Carl 

Zeiss, Inc., Thornwood, NY, USA).  

The Phazir 2400 is an integrated near-infrared handheld analyzer working in 

reflectance mode that incorporates all the essential components to deliver on-tree 

applications. The instrument scans at 8 nm intervals (pixel resolution 8 nm, optical 

resolution 12 nm), across the range of NIR wavelengths (1,600-2,400 nm). Using this 

instrument, four spectral on-tree measurements were made on each orange. The first 

was made on the equator, and the fruit was then turned through 90º for each successive 

measurement. The four spectra were averaged to provide a mean spectrum for each 

fruit. 

After harvesting, spectral measurements were made with the portable Zeiss 

Corona non-contact diode-array spectrophotometer (model Corona 45 VIS/NIR) 

working in reflectance mode and equipped with the turnstep module (revolving plate) 

and a ring support yielding a window 11 cm in diameter, on which oranges were 

arranged with the stem-calyx axis horizontal. The spectrophotometer scanned at 2 nm 

intervals, across a range encompassing the entire visible (380-780 nm) and near-IR 

(780-1,700 nm) wavelength ranges. Four separate spectral measurements were made on 

each orange, rotating the sample through 90º after each measurement. The four spectra 

were averaged to provide a mean spectrum for each fruit. 
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Measurement of Physical/Chemical Quality Parameters 

External quality parameters 

Oranges were individually weighed on an electronic balance (0-1.000 ± 0.01 g; model 

P1000 N, Metter-Toledo, GmbH, Greifensee, Switzerland). 

Equatorial and axial diameters were then measured using a digital precision 

calibrator (0-300 ± 0.01 mm; Comecta, Barcelona, Spain).  

Skin or external color values (L*, a*, b*) were individually measured at the 

equator, turning the fruit through 90º between measurements, using a Minolta Chroma 

Meter CR-400 (Minolta Corporation, Ramsay, NJ, USA). Chroma (C*), hue angle (h*) 

and color index were calculated as (a*^2+b*^2)^(1/2), tan-1 (b*/a*) and (1000a*/L*b*), 

respectively. The illuminant C and the 2-degree standard observer were used for all 

measurements in this study. The four measurements obtained per fruit for each of the 

color parameters tested were averaged. 

Internal quality parameters  

Firmness was measured as the maximum force required to penetrate the oranges to a 

puncturing depth of 10 mm. The maximum force required to pierce the fruit after a total 

penetration of 15 mm was also established. In both cases, a 6-mm cylindrical tip was 

used. Oranges were arranged with the stem-calyx axis horizontal; the first measurement 

was made at a point on the equator, and the second after turning the orange through 

180º. Texture measurements were made using a Universal Instron Texturometer (Model 

3343, single-column, Instron Corporation, Norwood, MA, USA), with a head speed of 

0.0016 m/s (100 mm/min) and a 1,000 N load cell. 

Fruits were then halved through the equatorial plane, and pericarp thickness was 

measured at two points on one of the halves using the same digital calibrator. Fruits 

were then individually pressed using a domestic juicer, and the juice obtained was 
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weighed on an electronic balance (0–210 ± 0.001 g; model C-600-SX, Cobos, 

Barcelona, Spain); the juice weight/fruit weight ratio was also calculated. 

Soluble solids content (SSC), pH and titratable acidity (TA) were measured 

following Obenland et al. (2008). The maturity index (SSC/TA ratio) was also 

calculated. 

Quantitative Calibrations: Sets and Data Processing 

Prior to carrying out NIRS calibrations, the structure and spectral variability of the 

sample population were determined following Shenk and Westerhaus (1991a b; 1995a), 

using the CENTER algorithm included in the WinISI II software package, version 1.50 

(Infrasoft International, Port Matilda, PA, USA). The CENTER algorithm was applied 

in the spectral regions 380-1,690 nm (Corona 45 VIS/NIR) and 1,600-2,400 nm (Phazir 

2400). The Standard Normal Variate (SNV) and Detrending (DT) methods were applied 

for scatter correction (Barnes et al. 1989), together with the mathematical derivation 

treatment '1,4,4,1', where the first digit is the number of the derivative, the second is the 

gap over which the derivative is calculated, the third is the number of data points in a 

running average or smoothing, and the fourth is the second smoothing (Shenk and 

Westerhaus 1995b; ISI 2000).  

Having ordered the initial sample set by spectral distance from the center of the 

population, 3 spectra were identified as outliers using the Phazir 2400 instrument, and 2 

using the Corona 45 VIS/NIR spectrophotometer (Shenk and Westerhaus 1991a b; 

1995a). The final sample set thus comprised 188 samples for the Phazir 2400 and 189 

for the Corona 45 VIS/NIR. From these sets, one in every 4 samples was removed to 

form the validation set (N = 63 samples for the Corona 45 VIS/NIR; N = 62 for the 

Phazir 2400), leaving a calibration set comprising 126 samples. 
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 Data were subjected to chemometric treatment using the WinISI II software 

package (ISI 2000). 

Construction and validation of prediction models by MPLS regression 

Calibration models were obtained for predicting external and internal quality parameters 

in intact oranges using MPLS as regression method (Shenk and Westerhaus 1995a); 

four cross-validation steps were included in the process in order to avoid overfitting 

(Shenk and Westerhaus 1995a).  

For each analytical parameter, different mathematical treatments were evaluated 

for scatter correction, including SNV and DT methods (Barnes et al. 1989). 

Furthermore, four derivate mathematical treatments were tested in the development of 

NIRS calibrations: 1,5,5,1; 2,5,5,1; 1,10,5,1 and 2,10,5,1 (Shenk and Westerhaus 

1995b). 

Here, for calibration of fruit quality parameters, the following spectral regions 

were tested: (1) for the Phazir 2400: 1,600–2,400 nm; and (2) for the Corona 45 

VIS/NIR: 500–1,690 nm and 1,100-1,690 nm. To eliminate spectral noise at the 

beginning and end of the spectrum, the regions between 380 and 500 nm and between 

1,690-1,700 nm were discarded when using the Corona 45 VIS/NIR. 

The statistics used to select the best equations were: standard error of calibration 

(SEC), coefficient of determination for calibration (R2), standard error of cross-

validation (SECV), coefficient of determination for cross-validation (r2), RPD or ratio 

of the standard deviation of the original data (SD) to SECV, RER or ratio of the range 

of the original data to SECV, and the coefficient of variation (CV) or ratio of the SECV 

to the mean value of the reference data for the calibration set. These latter three 

statistics enable SECV to be standardized, facilitating the comparison of the results 

obtained with sets of different means (Williams 2001). 
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The best-fitting equations obtained for the calibration set, as selected by 

statistical criteria, were subsequently evaluated by external validation following the 

protocol outlined by Shenk et al. (2001). 

Construction of prediction models for major quality parameters in intact oranges using 

the LOCAL algorithm 

The LOCAL algorithm was used to obtain models for predicting major quality-related 

parameters (weight, equatorial diameter, a*, firmness, maximum penetration force, 

pericarp thickness, juice weight, soluble solids content and titratable acidity). Previous 

research have demonstrated the potential of this algorithm for measuring some of these 

parameters in agro-food products (Sánchez et al. 2011, 2012). 

The LOCAL algorithm operates by searching and selecting samples in large 

databases that have spectra similar to that of the sample being analyzed (Shenk et al. 

1997). The selected samples are then used to compute a specific (LOCAL) calibration 

equation, based on PLS regression, for predicting the constituents of an unknown 

sample. Selection of the calibration samples is controlled by the value of the coefficient 

of correlation between the spectrum of the unknown sample and those comprising the 

spectral database (Shenk et al. 1997); the samples with the highest correlation are 

selected. A minimum correlation cutoff is available to ensure that the selected samples 

are highly correlated (Barton II et al. 2000). 

In the present study and for the main quality parameters analyzed (Kahn et al. 

2007), an optimization design for the LOCAL algorithm was set up by varying the 

number of calibration samples (k) from 70 to 100 in steps of 10 and the number of terms 

(l) from 13 to 15 in steps of 1. This yielded a factorial design of 4 x 3 = 12 runs. Finally, 

the number of PLS factors discarded was set at the first three, while the minimum 

number of samples used for each calibration set was set at 15. 
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For LOCAL equation development, the spectral regions and signal pretreatments 

indicated in Section 2.4.1 were used. The accuracy of prediction was evaluated by 

comparing results for the standard error of prediction (SEP), the coefficient of 

regression for external validation (r2), the bias and the SEP(c) with those obtained for 

the MPLS prediction.  

Results and Discussion 

Descriptive Data for NIR Calibrations and Validations 

Values for range, mean, standard deviation and coefficient of variation for each of the 

parameters analyzed using the calibration and validation sets after application of the 

CENTER algorithm are shown in Table 1. Structured selection using only spectral 

information treatment algorithms such as CENTER proved adequate, since the 

calibration and validation sets displayed similar values for mean, range and standard 

deviation for all study parameters, and ranges for the validation set lay within the range 

recorded for the calibration set. 

With the exception of pH and the color-related parameters, all study parameters 

covered a wide range of values. This was particularly true of: firmness (CV = 66.09%), 

titratable acidity (CV = 26.01%), maturity index (CV = 26.00%), maximum penetration 

force (CV = 25.23%), juice weight (CV =24.57%), fruit weight (21.99%) and pericarp 

thickness (21.65%).  

Williams (2001) and Pérez-Marín et al. (2005) highlight the importance of both 

sample set size and sample distribution within the calibration set, noting that sample 

sets for calibration should ideally ensure uniform distribution of composition across the 

range of the study parameter in question. 

Prediction of External Quality Parameters using MPLS Regression and NIR Spectra 
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The best calibration for each instrument and external quality parameter (weight, axial 

and equatorial diameter, color), using the combination of signal pretreatments yielding 

the best results in each case, are shown in Table 2, which also summarizes results for 

the external validation of those models. 

Models obtained using the Corona 45 VIS/NIR instrument displayed greater 

predictive ability for all study parameters. For each instrument, models were also 

obtained for the whole set of external quality parameters, over the complete wavelength 

range (500-1,690 nm). 

With the exception of parameters b* and color index, where separation was only 

possible into low, medium and high values, the calibration models constructed yielded 

acceptable precision within the limits established by Shenk and Westerhaus (1996). 

The calibration model displaying the greatest predictive capacity for the weight 

parameter was obtained with the diode-array instrument in the spectral region 500-1,690 

nm, using D2 log (1/R) (r2 = 0.79; SECV = 27.94 g; RPD = 2.15; RER = 10.24; CV = 

9.25%), which enabled acceptable quantification of intact orange weight values. Using 

the Phazir 2400 in the spectral range 1,600-2,400 nm, the best model (r2 = 0.47; SECV 

= 42.30 g; RPD = 1.37; RER = 5.90; CV = 14.01%) only enabled fruit to be classified 

as high or low weight (Shenk and Westerhaus 1996).  

Few published studies have addressed the use of NIR spectroscopy for 

predicting fruit weight. Pérez-Marín et al. (2009) tested a diode-array instrument (Perten 

DA-7000) and the same MEMS-base device used here (Phazir-2400) for predicting 

weight in intact nectarines both on the tree and in the laboratory, reporting better results 

with the diode-array instrument (RPD = 5.47; CV = 4.51%) over a spectral range 

similar to that used here, than with the MEMS device (RPD = 1.40; CV = 17.30%). The 

authors attributed the difference in predictive capacity to the measurement area 



13 
 

involved: whereas the Perten DA-700 perfoms a scan of the whole sample, the handheld 

MEMS instrument measures only a small area of the fruit, due to the small probe 

diameter (around 2 mm). In a later study, Cayuela and Weiland (2010) used two NIRS 

spectrophotometers in reflectance mode – a diode array device (Labspec VIS/NIR, 500-

2,300 nm) and an acousto-optic tunable filter (AOTF) instrument (Luminar 5030, 

1,100-2,300 nm) – to predict the weight of intact oranges in the laboratory; they also 

reported better results with the diode-array instrument, with values (RPD = 2.94; CV = 

5.82%), slightly better than those obtained here.  

Application of the calibration to the external validation sets yielded SEP(c) 

values of 36.54 g and 50.22 g, with a coefficient of determination of 0.67 and 0.38 and a 

bias of 6.68 g and 7.31 g, for the diode-array and MEMS instruments, respectively 

(Table 2). 

Using the monitoring procedure outlined by Shenk et al. (2001), the prediction-

statistic values obtained here either fell short of the limits recommended for routine 

application (coefficient of determination, MEMS device), or exceeded those limits 

(SEP(c), diode-array instrument). 

Models constructed for predicting equatorial diameter using the Corona 45 

VIS/NIR were more accurate and precise (r2 = 0.70; SECV = 3.51 mm; RPD = 1.84; 

RER = 9.02; CV = 4.25%) than those obtained with the Phazir 2400 (r2 = 0.59; SECV = 

4.11 mm; RPD = 1.57; RER = 7.46; CV = 4.97%). D2 log (1/R) was used in both cases, 

and the diode-array instrument was used in the spectral region 500-1,690 nm. The 

model constructed for predicting axial diameter using the Corona 45 VIS/NIR 

instrument displayed adequate predictive capacity (r2 = 0.77; SECV = 3.53 mm; RPD = 

2.10; RER = 9.97; CV = 4.03%;), whereas the Phazir 2400 was only able to 
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discriminate between high, medium and low values (r2 = 0.51; SECV = 5.25 mm; RPD 

= 1.42; RER = 6.90; CV = 6.01%). 

Slightly better results have been reported by Pérez-Marín et al. (2009) when 

using a diode-array instrument for predicting equatorial diameter in nectarines (RPD = 

2.22; CV = 5.95%); the authors suggest this is because the measurement area is greater 

than in the MEMS instrument. 

Validation statistics for the prediction of these parameters in intact oranges on-

tree and at harvest are also shown in Table 2. In terms of the validation protocol 

proposed by Shenk et al. (2001) for the routine implementation of NIRS prediction 

models, the only models yielding sufficiently accurate predictions of equatorial and 

axial diameter were those obtained with the Corona 45 VIS/NIR spectrophotometer. 

 Better results were obtained for the prediction of color-related parameters (L*, 

a*, b*, C*,  h* and color index) using the diode-array instrument, since it works in the 

spectral region 500-1,690 nm, which includes much of the visible spectrum; this NIRS 

spectrophotometer is additionally able to detect color differences barely apparent to the 

human eye. The calibration models obtained displayed acceptable predictive capacity 

for all color-related parameters (r2 = 0.66-0.73; SECV = 0.32-1.27; RPD = 1.72-1.92; 

RER = 8.32-9.74; CV = 1.03-6.08%) (Shenk and Westerhaus 1996). Models 

constructed using the MEMS device exhibited poorer predictive capacity, largely 

because its spectral working region (1,600-2,400 nm) does not include the visible 

spectrum. Even so, models were able to discriminate between high and low values for 

all color-related parameters (r2 = 0.43-0.65; SECV = 0.38-1.66; RPD = 1.33-1.69; RER 

= 6.67-9.26; CV = 1.04-7.26%).  

 Values obtained for the statistics used to assess the external validation of color-

prediction models indicate that these models cannot be used routinely, in that they fail 
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to fulfill the requirements outlined by Shenk et al. (2001). Even so, the simultaneous 

measurement of various colour parameters along with other external and internal quality 

parameters is clearly of interest to the citrus industry. 

Prediction of Internal Physical Quality Parameters using MPLS Regression and NIR 

Spectra 

Models obtained using the Corona 45 VIS/NIR spectrophotometer displayed greater 

predictive capacity than those constructed with the MEMS-based device for all except 

texture-related parameters (firmness and maximum penetration force), for which 

slightly better results were obtained using the Phazir 2400 (Table 3). This may be due to 

the measurement area involved, since the Corona 45 VIS/NIR performs a scan of the 

whole sample, while the Phazir 2400 measures only a small area of the fruit (around 2 

mm at each measurement). A better fit was noted between the reference data for these 

two parameters and the NIR spectra captured using the MEMS instrument. 

Using the diode-array spectrophotometer, the best models for firmness and fruit 

weight were obtained using the whole wavelength range of the instrument (500-1,690 

nm), whilst for maximum penetration force, pericarp thickness and juice content, the 

best models were obtained in the 1,100-1,690 nm range.  

Of the two texture measurements, maximum penetration force displayed greater 

correlation with the NIR spectral data obtained.  

Neither of the instruments used, regardless of the math treatments applied, 

yielded viable models for the routine prediction of firmness, coefficient of 

determination values (r2) never exceeding 0.42, which would only enable discrimination 

between high and low firmness values (Shenk and Westerhaus 1996). These results 

highlight the difficulty in correlating destructive measurements made to a puncturing 

depth of 10 mm and non-destructive NIR measurements, particularly for thick-peel 
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fruits such as this orange variety; as Peirs et al. (2002) have noted, NIR light will only 

penetrate usefully down to a depth of between 1 and 5 mm, depending on the 

wavelength, the instrument and the fruit ripeness stage. 

Perhaps because of the challenges involved, very few studies have addressed the 

measurement of firmness in oranges using NIRS technology. Cayuela and Weiland 

(2010) measured firmness in orange pulp (i.e. fruit without pericarp), a process thus 

requiring previous sample preparation; the models obtained displayed sufficient 

predictive capacity to distinguish between high, medium and low values for this 

parameter (r2 = 0.66; RPD = 1.85). However, their results cannot be compared with 

those of the present study, since they were using peeled rather than intact fruit. 

 The models obtained using both instruments displayed greater predictive 

capacity for maximum penetration force than for firmness, yielding values close to 

those provided by the destructive reference method; similar values were obtained with 

both instruments, as indicated by the descriptive statistics (r2 = 0.76-0.79; SECV = 4.14-

4.40 N; RPD = 2.03-2.19; RER = 10.69-11.18; CV = 10.47-10.89%), for the diode-

array and MEMS-based instruments, respectively. The best results were obtained in 

both cases using D1 log (1/R).  

It should be stressed that the quality of the predictions obtained for firmness 

(both instruments) and maximum penetration force (Phazir 2400) using MPLS 

regression might well be considered unacceptable, exceeding the confidence limits 

recommended, particularly in view of the low r2 values obtained (Table 3). 

 The best model for predicting pericarp thickness was again obtained with the 

diode-array instrument, using D2 log (1/R) and the spectral region 1100-1690 nm (r2 = 

0.80; SECV = 0.46 mm; RPD = 2.25; RER = 10.61; CV = 9.19%). The model provided 
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acceptable quantification for this parameter, which is of particular interest to the citrus-

fruit industry because it is linked to fruit yield.  

It is worth noting in this respect that NIRS analysis was carried out on intact 

oranges; the greater light intensity provided by the Corona 45 VIS/NIR 

spectrophotometer may ensure greater penetration of light into the fruit, thus improving 

thickness estimates (Paz et al. 2008 2009; Pérez-Marín et al. 2009 2010).  

The best models for predicting juice weight and juice content – the latter 

calculated from the ratio of juice weight to fruit weight – were obtained with the Corona 

45 VIS/NIR instrument, using the spectral range 500-1,690 nm and the D2 log (1/R) 

mathematical treatment for juice weight (r2 = 0.71; SECV = 15.39 g; RPD = 1.85; RER 

= 9.13; CV = 11.37%), and the range 1,100-1,690 nm with D2 log (1/R) treatment for 

juice content (r2 = 0.52; SECV = 2.86%; RPD = 1.44; RER = 7.15; CV = 6.38%). These 

two parameters are essential ripeness indicators for the orange-processing industry.  

The models constructed using data obtained with the MEMS-based instrument 

only enabled fruit to be classified by high or low juice weight and juice content (Table 

3). 

In a laboratory study of similar parameters using two NIRS instruments, Cayuela 

and Weiland (2010) found that the diode-array instrument displayed greater predictive 

capacity than an AOTF instrument for both juice volume (RPD = 2.94; CV = 16.22%) 

and juice volume/fruit weight ratio (RPD = 1.61; CV= 8.11%); their results were 

slightly better than those observed here, and the number of samples was also far larger 

(n = 396). 

The robustness of NIRS predictions for these parameters, while better with the 

Corona 45 VIS/NIR instrument, cannot be considered acceptable for routine purpose 

(Table 3). 
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Prediction of Internal Chemical Quality Parameters using MPLS Regression and NIR 

Spectra 

Models constructed using data obtained with the Corona 45 VIS/NIR spectrophotometer 

displayed greater predictive capacity than those provided by the Phazir 2400 for all the 

chemical parameters tested (Table 4). 

The diode-array spectrophotometer adequately predicted fruit soluble solids 

content (SSC) regardless of the mathematical treatment applied (Shenk and Westerhaus 

1996), although the best model was obtained using D2 log (1/R) over the whole spectral 

range of the device (r2 = 0.80; SECV = 0.58%; RPD = 2.19; RER = 9.37; CV = 4.78%). 

The best model using the MEMS instrument (r2 = 0.62; SECV = 0.79%; RPD = 1.61; 

RER = 6.94; CV = 6.47%) was also obtained with the D2 log (1/R) treatment. 

 The predictive capacity of the SSC model constructed using the Corona 45 

VIS/NIR instrument was similar to that reported for intact oranges by Cayuela (2008) 

(RPD = 2.65; CV = 4.37%) and by Cayuela and Weiland (2010) (RPD = 2.13; CV= 

6.12%), and slightly lower than that observed by Liu et al. (2010) using a diode-array 

instrument with range similar to those used here (RPD = 2.84; CV = 3.42%).  

 To test robustness, the models constructed using the two spectrophotometers 

were applied to the external validation set (Table 1). The SSC prediction model 

constructed using the Phazir 2400 instrument met the validation requirements 

recommended by Shenk et al. (2001), confirming sufficiently accurate prediction, whilst 

with the Corona 45 VIS/NIRS spectrophotometer, the value obtained for SEP(c) 

exceeded the recommended confidence limit (Table 4). 

 The results obtained with calibration models constructed for pH and titratable 

acidity confirmed the limited viability of NIRS technology for estimating acidity-related 

parameters, perhaps because in this case oranges were harvested at commercial 



19 
 

maturity, and thus exhibited considerable uniformity and minimal variation. Due to the 

very narrow range for pH and titratable acidity, and the resulting low SD, NIRS 

prediction models could not be constructed using the MPLS algorithm (González-

Caballero et al. 2010). Williams (2001) notes that, from a practical point of view, if the 

SD is very low for a population of reasonable size (60 samples or more), this may 

indicate that the variance is so low that analysis is not necessary, except for quality 

control purposes. However, and despite the low range in reference values, there is still a 

need for regular frequent analyses to ensure that specifications are being met.  

Models constructed using the Corona 45 VIS/NIR were able to distinguish 

between high and low pH values (Shenk and Westerhaus 1996). Cayuela (2008) and 

Cayuela and Weiland (2010) have drawn attention to the difficulty in predicting pH in 

oranges using NIRS technology, noting that results obtained so far continue to prove 

unacceptable. 

 The predictive capacity of models for measuring titratable acidity was found to 

be equally unsatisfactory (Table 4). Similar results have been reported by a number of 

authors attempting to measure acidity in oranges using NIRS technology: Cayuela 

(2008) obtained models displaying very limited predictive capacity (RPD = 1.35; CV = 

15.36%), although the results were slightly better than those recorded here, perhaps 

because the training set used exhibited a wider range of acidity values and thus a larger 

standard deviation than those obtained in the present study. Cayuela and Weiland 

(2010) later constructed models to predict titratable acidity in oranges using a diode-

array instrument, with a broader range of values, again achieving slightly greater 

predictive capacity than that recorded here (RPD = 1.69; CV= 17.58%). 

The MPLS models predicted pH and titratable acidity in validation-set samples 

with low values for r2 (0.10-0.32 for pH and 0.04-0.22 for titratable acidity), in neither 
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case meeting the recommendations of Shenk et al. (2001). These models are thus not 

suitable for routine applications. 

Models for predicting the maturity index (i.e. SSC/TA ratio) were influenced, 

using both spectrophotometers, by the poor predictive capacity of the models obtained 

for titratable acidity. The Corona 45 VIS/NIR diode-array instrument yielded slightly 

better results, comparable to those reported in the literature (Cayuela and Weiland 

2010).  

At validation (Table 4), r2 values were found to be lower than the control limit 

suggested by Shenk et al. (2001), confirming the non-robustness of the model for 

predicting maturity index in intact oranges. 

Prediction of Main Quality Parameters using MPLS versus LOCAL Algorithms  

This study applied a non-linear regression strategy based on the LOCAL algorithm, in 

order to determine whether it improved the robustness of models for predicting major 

quality parameters in intact oranges obtained using linear regression (MPLS).  

Values for SEP, SEP(c), bias and r2 obtained using the best mathematical 

treatment for each parameter and for all 12 runs (3 values for l and 4 values for k) are 

shown in Table 5, which also indicates the combination of k and l yielding the lowest 

SEP for each parameter and instrument. 

When applying the LOCAL algorithm to predict the external validation set, 

between 70 and 90 samples were used for all parameters except equatorial diameter and 

pericarp thickness with the Phazir 2400 instrument, for which 100 samples were used.  

Comparison of the performance of the two algorithms for predicting the main 

external quality parameters (weight, equatorial diameter and colour (a*)) in intact 

oranges using both spectrophotometers (Table 5) shows that models constructed using 

the LOCAL algorithm and data obtained using the diode-array instrument displayed 
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improved predictive capacity (r2 > 0.7) with regard to those constructed using MPLS 

regression. The LOCAL algorithm also improved the performance of MEMS-based 

models for predicting weight and equatorial diameter, although these were still 

unsuitable for routine application.  

Application of the LOCAL algorithm also enhanced the predictive performance 

of models for the two texture-related parameters, increasing the coefficient of 

determination for firmness prediction by 21% for the diode-array instrument and 66% 

for the MEMS instrument. Similar results were obtained for maximum penetration 

force, for which application of LOCAL yielded good predictive capacity using the 

Corona 45 VIS-NIR. 

Sánchez et al. (2011) have also reported that use of the LOCAL algorithm rather 

than MPLS regression enhances the performance of models for predicting texture-

related parameters in intact fruits. 

Application of LOCAL improved the capacity of models for predicting the four 

parameters of greatest interest to the juice industry (pericarp thickness, juice weight, 

SSC and TA), slightly better results being achieved with the diode-array 

spectrophotometer.  

Results obtained for the two physical parameters studied suggest that, using the 

Corona 45 VIS-NIR, application of the LOCAL algorithm would enable the processing 

industry to distinguish between thick, medium and fine peel, and between high, medium 

and low juice weights (r2 = 0.68 for both parameters), whereas using the Phazir 2400, 

discrimination would be possible only between thick and thin peels and between high or 

low juice weights (r2 = 0.46 for pericarp thickness; r2 = 0.41 for juice weight).  

Models constructed using LOCAL for predicting SSC displayed good predictive 

capacity using the diode-array instrument (r2 = 0.74) and sufficient capacity (r2 = 0.68) 
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to distinguish between high, medium and low values using the MEMS instrument. The 

LOCAL algorithm also enhanced, albeit slightly, the predictive capacity of models for 

TA, although this is still likely to be deemed unacceptable in view of the low r2 values 

obtained. 

Sánchez et al. (2012) report that use of LOCAL rather than MPLS enhanced the 

performance of models for predicting all quality parameters in strawberries, the most 

noticeable improvement being recorded for maximum penetration force. It is significant 

that improvements were also achieved for parameters such as firmness, titratable acidity 

and pH, all considered tricky to predict using NIRS applications (González-Caballero et 

al. 2010; Pérez-Marín et al. 2010). 

Conclusions 

These results confirm that NIRS technology is a viable option for the simultaneous and 

non-destructive measurement of a large number of internal and external quality 

parameters in intact oranges, both on the tree and on arrival at processing plants or 

wholesale distribution centers. Models obtained using the diode-array instrument 

(Corona 45 VIS/NIR) displayed greater predictive capacity than those constructed using 

the latest-generation, hand-held compact MEMS device (Phazir 2400). However, the 

latter displayed acceptable predictive capacity for NIRS prediction of certain internal 

and external quality parameters, and is also particularly suited to the on-tree monitoring 

and evaluation of individual oranges; it is therefore a promising tool in fruit ripening 

protocols aimed at optimizing the harvesting date depending on whether the fruit is to 

be processed for juice or consumed fresh. The LOCAL algorithm proved to be 

considerably more effective than MPLS regression for improving the prediction of the 

main quality parameters in intact oranges, especially when using the MEMS instrument. 

To our knowledge, this is the first attempt to implement NIR spectroscopy on-tree for 
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this purpose. Over the coming years, however, recalibration may be required, especially 

for acidity and texture related parameters, increasing the number of samples in the 

calibration set. 
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Table 1 Statistical analysis of calibration and validation sets: data range, mean and 

standard deviation (SD) and coefficient of variation (CV) 

 
Parameter Set Range Mean SD CV (%) 

Weight (g) Calibration 170.00-598.30 306.24 67.34 21.99 

Validation 196.40-561.25 324.40 79.70 24.57 

Equatorial diameter (mm) Calibration 69.24-108.34 83.02 6.98 8.41 

Validation 70.71-107.18 84.46 7.58 8.97 

Axial diameter (mm) Calibration 69.69-107.20 87.29 7.74 8.87 

Validation 74.46-106.35 88.07 7.97 9.05 

L* Calibration 64.06-79.52 68.75 1.70 2.47 

Validation 65.23-71.19 68.70 1.22 1.78 

a* Calibration 20.93-30.88 25.74 1.94 7.53 

Validation 22.09-30.55 26.09 1.68 6.45 

b* Calibration 63.01-78.14 71.86 2.43 3.39 

Validation 66.07-75.95 71.80 1.99 2.78 

C* Calibration 68.34-81.98 76.36 2.32 3.04 

Validation 71.60-79.90 76.42 1.82 2.38 

h* Calibration 66.59-73.52 70.28 1.56 2.22 

Validation 67.09-72.93 70.08 1.34 1.91 

Color index Calibration 3.76-6.75 5.23 0.55 10.52 

Validation 4.34-6.36 5.29 0.46 8.75 

Firmness (N) Calibration 5.34-75.17 21.44 14.17 66.09 

Validation 5.60-62.18 20.08 14.14 70.39 

Maximum penetration force (N) Calibration 21.59-75.93 40.94 10.33 25.23 

Validation 23.73-62.58 38.69 9.04 23.06 

Pericarp thickness (mm) Calibration 2.69-8.35 5.06 1.10 21.65 

Validation 3.36-7.48 4.90 0.90 18.38 

Juice weight (g) Calibration 73.62-282.96 137.05 33.67 24.57 

Validation 86.09-236.91 146.18 30.67 20.98 

Juice content (%) Calibration 23.99-61.68 44.84 5.09 11.35 

Validation 34.38-53.15 44.83 4.87 10.87 

Soluble solids content (%) Calibration 9.35-14.8 12.13 1.28 10.53 

Validation 9.50-13.30 11.95 1.22 10.24 

pH Calibration 3.17-4.14 3.64 0.21 5.73 

Validation 3.25-4.02 3.63 0.19 5.12 

Titratable acidity (% citric acid) Calibration 0.36-1.05 0.59 0.15 26.01 

Validation 0.38-0.91 0.59 0.13 21.74 

Maturity index Calibration 12.02-40.03 22.00 5.72 26.00 

Validation 12.71-34.08 21.04 4.58 21.75 
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Table 2 MPLS regression statistics for NIR-based models for predicting external 

quality parameters in intact oranges 

 

Parameter Instrument Spectral range 
(nm) 

Mathematic 
treatment 

Calibration Validation 

Na SECV r2 RPD RER CV Nb r2 SEP(c) Bias 

Weight (g) Corona 500-1690 2,5,5,1 121 27.94 0.79 2.15 10.24 9.25** 63 0.67 36.54* 6.68 

Phazir 1600-2400 1,5,5,1 123 42.30 0.47 1.37 5.90 14.01 62 0.38* 50.22 7.31 

Equatorial diameter 
(mm) 

Corona 500-1690 2,5,5,1 124 3.51 0.70 1.84 9.02 4.25** 63 0.75 3.62 0.61 

Phazir 1600-2400 2,10,5,1 125 4.11 0.59 1.57 7.46 4.97 62 0.49* 5.03* 0.65 

Axial diameter 
(mm) 

Corona 500-1690 1,10,5,1 120 3.53 0.77 2.10 9.97 4.03** 63 0.72 3.95 0.55 

Phazir 1600-2400 2,10,5,1 121 5.25 0.51 1.42 6.90 6.01 62 0.51* 5.18 0.63 

L* Corona 500-1690 2,5,5,1 118 0.71 0.71 1.87 9.39 1.03** 63 0.59* 0.91* 0.01 

Phazir 1600-2400 1,10,5,1 115 0.72 0.65 1.69 9.26 1.04 62 0.43* 0.99* -0.19 

a* Corona 500-1690 1,5,5,1 124 0.98 0.73 1.92 9.74 3.78** 63 0.66 1.04* -0.20 

Phazir 1600-2400 2,5,5,1 120 1.22 0.55 1.49 7.63 4.76 62 0.39* 1.54* 0.09 

b* Corona 500- 1690 2,5,5,1 121 1.27 0.68 1.75 8.32 1.76** 63 0.51* 1.48* 0.01 

Phazir 1600-2400 2,10,5,1 121 1.66 0.43 1.33 6.67 2.30 62 0.15* 1.87* 0.20 

C* Corona 500-1690 2,5,5,1 122 1.15 0.72 1.87 9.46 1.51** 63 0.51* 1.37* -0.05 

Phazir 1600-2400 2,10,5,1 121 1.45 0.54 1.48 7.52 1.90 62 0.26* 1.66* 0.23 

h* Corona 500-1690 2,10,5,1 124 0.81 0.72 1.89 8.46 1.15** 63 0.61 0.98* 0.09 

Phazir 1600-2400 1,10,5,1 119 0.99 0.56 1.50 7.03 1.40 62 0.21* 1.39* 0.12 

Color index Corona 500-1690 2,10,5,1 125 0.32 0.66 1.72 9.40 6.08** 63 0.60 0.36* -0.06 

Phazir 1600-2400 1,5,5,1 120 0.38 0.46 1.34 6.96 7.26 62 0.23* 0.43 0.06 
a Number of samples in the calibration set. 
b Number of samples in the validation set.  

* Values exceeding control limits recommended by Shenk et al. 2001. 

** Best model. 
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Table 3 MPLS regression statistics for NIR-based models for predicting internal 

physical quality parameters in intact oranges 

 

Parameter Instrument Spectral range 
(nm) 

Mathematic 
treatment 

Calibration Validation 

Na SECV r2 RPD RER CV Nb r2 SEP(c) Bias 

Firmness (N) Corona 500-1690 2,5,5,1 122 10.55 0.33 1.20 5.88 51.56 63 0.33* 11.60* 1.35 

Phazir 1600-2400 2,10,5,1 113 10.03 0.42 1.30 5.46 48.43** 62 0.30* 15.05* -1.98 

Maximum 
penetration force 
(N) 

Corona 1100-1690 1,10,5,1 115 4.14 0.76 2.03 10.69 10.47 63 0.68 5.16* 0.47 

Phazir 1600-2400 1,10,5,1 112 4.40 0.79 2.19 11.18 10.89** 62 0.43* 6.91* -0.03 

Pericarp thickness 
(mm) 

Corona 1100-1690 2,10,5,1 122 0.46 0.80 2.25 10.61 9.19** 63 0.58* 0.64* -0.14 

Phazir 1600-2400 2,5,5,1 121 0.66 0.58 1.54 7.07 13.18 62 0.43* 0.76 -0.08 

Juice weight (g) Corona 500-1690 2,5,5,1 117 15.39 0.71 1.85 9.13 11.37** 63 0.58* 18.45* 1.79 

Phazir 1600-2400 2,10,5,1 122 22.62 0.33 1.21 6.35 16.87 62 0.28* 23.81 4.68 

Juice content (%) Corona 1100-1690 2,5,5,1 117 2.86 0.52 1.44 7.15 6.38** 63 0.26* 4.24* -0.14 

Phazir 1600-2400 1,5,5,1 123 3.78 0.33 1.22 7.73 8.38 62 0.21* 4.73* -0.59 
a Number of samples in the calibration set. 
b Number of samples in the validation set.  

* Values exceeding control limits recommended by Shenk et al. 2001. 

** Best model. 
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Table 4 MPLS regression statistics for NIR-based models for predicting internal 

chemical quality parameters in intact oranges. 

 

Parameter Instrument Spectral range 
(nm) 

Mathematic 
treatment 

Calibration Validation 

Na SECV r2 RPD RER CV Nb r2 SEP(c) Bias 

Soluble solids 
content (%) 

Corona 500-1690 2,10,5,1 122 0.58 0.80 2.19 9.37 4.78** 63 0.71 0.67* -0.01 

Phazir 1600-2400 2,10,5,1 126 0.79 0.62 1.61 6.94 6.47 62 0.61 0.77 -0.10 

pH Corona 500-1690 2,10,5,1 122 0.15 0.45 1.34 6.34 4.21** 63 0.32* 0.15 0.01 

Phazir 1600-2400 1,10,5,1 126 0.20 0.12 1.07 4.97 5.36 62 0.10* 0.19 -0.01 

Titratable acidity 
(% citric acid) 

Corona 500-1690 1,5,5,1 125 0.12 0.36 1.24 5.58 20.77** 63 0.22* 0.12 0.02 

Phazir 1600-2400 1,5,5,1 124 0.14 0.09 1.05 4.06 23.78 62 0.04* 0.13 0.02 

Maturity index 
(SSC/TA) 

Corona 500-1690 1,5,5, 1 122 4.25 0.35 1.24 5.48 19.68** 63 0.24* 4.05 -0.79 

Phazir 1600-2400 2,5,5,1 124 4.52 0.32 1.21 5.15 20.76 62 0.16* 4.56 -0.26 
a Number of samples in the calibration set. 
b Number of samples in the validation set. 

* Values exceeding control limits recommended by Shenk et al. 2001.  

** Best model. 
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Table 5 Validation statistics for the best models for predicting main quality parameters 

in intact oranges using MPLS and LOCAL algorithms 

Parameter Instrument Regression method Spectral 
range (nm) 

Mathematic 
treatment 

Factors SEP SEP(c) Bias r2 

Weight (g) Corona  MPLS 500-1690 2,5,5,1 5 36.84 36.54* 6.68 0.67 

 LOCAL (ka = 80)** 1100-1690 1,5,5,1 15 (-3) 44.94 44.15* 10.05 0.74 

 Phazir  MPLS 1600-2400 1,5,5,1 2 50.32 50.22 7.31 0.38* 

  LOCAL (k = 80) 1600-2400 2,10,5,1 15 (-3) 62.61 61.52* 13.99 0.42* 

Equatorial diameter 
(mm) 

Corona  MPLS 500-1690 2,5,5,1 2 3.64 3.62 0.61 0.75 

LOCAL (k = 90)** 1100-1690 1,5,5,1 15 (-3) 3.65 3.65 0.46 0.78 

 Phazir  MPLS 1600-2400 2,10,5,1 2 5.03 5.03* 0.65 0.49* 

  LOCAL (k = 100) 1600-2400 2,10,5,1 13 (-3) 5.40 5.32* 1.13 0.52* 

a* Corona  MPLS 500-1690 1,5,5,1 9 1.05 1.04* -0.20 0.66 

 LOCAL (k = 90)** 500-1690 1,5,5,1 14 (-3) 0.91 0.91 -0.15 0.74 

 Phazir MPLS 1600-2400 2,5,5,1 15 1.53 1.54* 0.09 0.39* 

  LOCAL (k = 90) 1600-2400 2,5,5,1 13 (-3) 1.41 1.40* 0.25 0.29* 

Firmness (N) Corona  MPLS 500-1690 2,5,5,1 4 11.59 11.60* 1.35 0.33* 

 LOCAL (k = 70) 500-1690 2,10,5,1 14 (-3) 10.99 10.96 -1.63 0.40* 

 Phazir MPLS 1600-2400 2,10,5,1 12 15.05 15.05* -1.98 0.30* 

    LOCAL (k = 90)** 1600-2400 2,5,5,1 14 (-3) 10.58 10.66 0.20 0.50* 

Maximum penetration 
force (N) 

Corona  MPLS 1100-1690 1,10,5,1 6 5.14 5.16* 0.47 0.68 

LOCAL (k = 90)** 500-1690 2,10,5,1 15 (-3) 4.64 4.65 -0.52 0.74 

 Phazir  MPLS 1600-2400 1,10,5,1 13 6.85 6.91* -0.03 0.43* 

    LOCAL (k = 90) 1600-2400 1,5,5,1 14 (-3) 5.45 5.44* -0.79 0.63 

Pericarp thickness 
(mm) 

Corona  MPLS 1100-1690 2,10,5,1 10 0.65 0.64* -0.14 0.58* 

LOCAL (k = 80)** 1100-1690 1,5,5,1 14 (-3) 0.58 0.57* -0.15 0.68 

Phazir  MPLS 1600-2400 2,5,5,1 2 1.76 0.76 -0.08 0.43* 

    LOCAL (k = 100) 1600-2400 2,5,5,1 13 (-3) 0.77 0.75 -0.19 0.46* 

Juice weight (g) Corona  MPLS 500-1690 2,5,5,1 3 18.39 18.45* 1.79 0.58* 

 LOCAL (k = 80)** 1100-1690 1,5,5,1 14 (-3) 18.26 18.30* 1.95 0.68 

 Phazir MPLS 1600-2400 2,10,5,1 4 24.07 23.81 4.68 0.28* 

    LOCAL (k = 80) 1600-2400 1,5,5,1 14 (-3) 25.56 24.79 7.00 0.41* 

Soluble solids content 
(%)  

Corona  MPLS 500-1690 2,10,5,1 5 0.67 0.67* -0.01 0.71 

LOCAL (k = 70)** 500-1690 1,5,5,1 13 (-3) 0.62 0.63* -0.01 0.74 

Phazir MPLS 1600-2400 2,10,5,1 5 0.77 0.77 -0.10 0.61 

  LOCAL (k = 90) 1600-2400 1,5,5,1 14 (-3) 0.70 0.69 -0.14 0.68 

Titratable acidity (% 
citric acid) 

Corona  MPLS 500-1690 1,5,5,1 6 0.12 0.12 0.02 0.22* 

LOCAL (k = 80)** 1100-1690 2,5,5,1 15 (-3) 0.11 0.11 0.02 0.27* 

 Phazir MPLS 1600-2400 1,5,5,1 1 0.13 0.13 0.02 0.04* 

  LOCAL (k = 80) 1600-2400 1,10,5,1 15 (-3) 0.12 0.12 0.01 0.15* 
a Number of samples used in LOCAL algorithm. 

* Values exceeding control limits recommended by Shenk et al. 2001. 

** Best model. 


