1	Chromosomal numeric abnormalities on early bovine embryos
2	derived from in vitro fertilization: effect of the oocyte quality,
3	maturation environment and incubation time.
4	
5	Demyda-Peyrás Sebastian ^{ac1*} ; Dorado Jesus ^b ; Hidalgo Manuel ^b ; Anter Jaouad ^c ; De Luca
6	Leonardo ^a ;Genero, Enrique ^a and Moreno-Millán Miguel ^c
7	a Animal Production, Lomas de Zamora University, Bs As, Argentina; b Department of
8	Medicine and Surgery, Cordoba University, Spain; c Department of Genetic, Córdoba
9	University, Spain
10	*Corresponding author: ge2depes@uco.es. Address: Ruta 4 Km2 CP:1836 Llavallol,
11	Argentina. Phone / FAX: 0054-11-4282-6263
12	1 Present Address: CN IV KM 396, Campus Rabanales CP 14071. Gregor Mendel
13	Building, Cordoba, Spain. Phone Number: +34-957-218509
14	

http://www.publish.csiro.au/journals/rfd

1	5
1	5

16 Abstract

17	Chromosomal aberrations are one of the major causes of embryo failures in the mammals.
18	It is also been demonstrated that the occurrence of this kind of abnormalities is higher on <i>in</i>
19	vitro produced (IVP) embryos. This study was conducted to investigate the effect of oocyte
20	morphology and maturation conditions on chromosomal abnormality rates in bovine
21	preimplantational embryos. To this end, 790 early cattle embryos derived from oocytes
22	with different morphology and maturated in different conditions (maturation period: 24 h vs
23	36 h; maturation media: five different serum supplements in TCM-199) were
24	cytogenetically evaluated in three sequential experiments. Rates of normal diploidy and
25	abnormal haploidy, polyploidy and aneuploidy were determined in each embryo.
26	Throughout all experiments, the rate of chromosomal abnormalities were significantly
27	(p<0.05) influenced by the oocyte morphology and maturation conditions (maturation time
28	and culture media). We find that a lower morphological quality is connected with high rates
29	of numerical chromosome abnormalities (p<0.05). Moreover, we also find that polyploidy
30	is associated with increased maturation time (p<0.01), whereas maturation media
31	significantly (p<0.05) affected the rates of haploidy and polyploidy. In general, the use of
32	ECS or FCS as serum supplements produced the higher rates of chromosomal aberrations
33	(p<0.05) compared to the other serum supplements. According to our results, we can
34	conclude that morphological quality of oocytes and maturation conditions affect the
35	chromosomal abnormality rates of the subsequent IVP cattle embryos.
36	

37 Keywords: Chromosomal abnormalities, *in vitro*, bovine embryo, oocyte maturation.

39

40 **1. Introduction**

41 The bovine *in vitro* fertilization (IVF) industry has been constantly improving during the 42 last decade. At present time the number of *in vivo* and *in vitro* produced (IVP) embryos is similar in some countries (Pontes, Silva et al. 2010). Despite the vast researches performed 43 44 during the last years, the overall efficiency of IVP cattle embryos still remains low. Only 45 30% of cultured oocytes reach the blastocyst stage (Lonergan 2007). It is well known that 46 *in vivo* derived embryos have higher quality and viability to term than those produced by *in* 47 vitro maturation, fertilization and culture (Ulloa Ulloa, Yoshizawa et al. 2008b), even when 48 the same donor cow was used (Pontes, Nonato-Junior *et al.* 2009). While the causes of this 49 inefficiency are likely numerous and complex, the oocyte morphological quality at the 50 beginning of the IVP process and the oocyte maturation protocols have been described as 51 major contributing factors on this issue. Several authors demonstrated that oocytes with 52 higher morphological quality (class "A" and "B") have shown improved developmental 53 rates to term in the subsequently formed embryos (Hawk and Wall 1994). In this sense, 54 maturation media (Bilodeau-Goeseels 2006; Räty, Ketoja et al. 2011), maturation protocols 55 (Yang, Jiang *et al.* 1993) and serum supplementation (Fukui and Ono 1989; Pereira, 56 MacHado *et al.* 2010) are also described as potential causes of these differences. For this 57 reason different *in vitro* oocyte maturation media, maturation protocols and media 58 supplementation patterns are being developed and tested constantly in order to meet the 59 metabolic requirements just as in vivo conditions (Purpera, Giraldo et al. 2009; Rizos, Ward 60 et al. 2002).

Multiple causes have been described as being responsible for increased developmental
failure on IVP embryos (Van Soom, Vandaele *et al.* 2007; Vandaele and Van Soom 2011).

63	In this sense, chromosomal abnormalities are thought to be a major contributor and are
64	associated with reduced developmental potential (King, Coppola et al. 2006), impaired
65	embryo viability, (Kawarsky, Basrur et al. 1996) and embryonic death and abortion (King
66	1990). In cattle, it has been reported that IVP embryos have a higher rate of chromosome
67	abnormalities than their in vivo counterparts (Viuff, Rickords et al. 1999). Similar results
68	have been found in pig (Ulloa Ulloa, Yoshizawa et al. 2008a), horse (Rambags, Krijtenburg
69	et al. 2005), goat (Villamediana, Vidal et al. 2001) and sheep (Alexander, Coppola et al.
70	2005). It has been demonstrated that the percentage of chromosomal abnormalities appears
71	to be significantly influenced by maturation environment in oocytes (A'Arabi, Roussel et
72	al. 1997) and by post-fertilization culture conditions on IVP embryos (Lonergan, Pedersen
73	<i>et al.</i> 2004).
74	Currently, it is not possible to evaluate the chromosomal complements of matured oocytes
75	previous to fertilization in the IVF laboratory by simple and non-invasive techniques
76	(Coticchio, Sereni et al. 2004). Therefore, oocytes with normal maturation parameters can
77	have an abnormal chromosomal composition, producing higher rates of fertilization failures
78	and development impairment. Despite of their potential economic impact on livestock
79	production, only a few cytogenetic studies of IVP embryos have been reported (Garcia-
,	

80 Herreros, Carter *et al.* 2010). Moreover, moreover they did not focus they have not been

81 focused on the influence of oocyte quality and maturation environment as potential causes
82 of these alterations.

The present study was therefore designed to examine the effect produced by: 1) the oocyte
morphological quality, 2) oocyte maturation time, and 3) oocyte maturation media (serum
supplementation), on the incidence of numerical chromosomal abnormalities in early IVP
bovine embryos.

87

88 **2. Materials and methods**

90	2.1 Media and reagents
91	Chemicals were purchased from Sigma-Aldrich, Spain, unless otherwise is indicated.
92	Percoll were purchased from GE Healthcare, Spain. Nunclon TM Plastic dishes were
93	purchased from Termofischer Scientific, Germany. Sterilization filters used in culture
94	media were purchased from Millipore Corporation, Spain. Oocyte and embryo were
95	manipulated with 20 μ l micropipette tips purchased from Eppendorf Iberica, Spain. Estrus
96	cow serum (ECS) were obtained according to our previous protocols (Ocana-Quero,
97	Pinedo-Merlin et al. 1999b). Briefly, sterile complete blood samples were obtained by
98	jugular venopunction of six estrous cows. Pooled serum was obtained by centrifugation
99	(200 x G, 15 min), inactivated by heat (56°C, 30 min) and sterilized with a 0.22 μ m
100	membrane filter. Aliquots were frozen and stored at -20°C until its use. Anestrus cow serum
101	(ACS) was obtained following the same protocol by collecting blood samples from 6
102	different anestrous cows.
103	
104	2.2 In vitro embryo production

- 105 Bovine embryos were produced according to previous studies performed in our laboratory
- 106 (Ocana-Quero, Pinedo-Merlin *et al.* 1999a), with the following modifications:
- 107
- 108 2.2.1 Collection of ovaries and oocytes and in vitro maturation
- 109 Ovaries were collected from slaughtered cows in the local abattoir and transported to the
- 110 laboratory within the next 2 h after collection. The ovaries were washed thrice in warm

111	physiological saline solution supplemented with kanamycin (25 mg/ml). Cumulus oophorus
112	complexes (COCs) were obtained from follicles between 4 and 8 mm through aspiration
113	with 18 G needle and placed into a 15 ml conical tube with 2 ml of warm H-TALP media.
114	After 1 h sedimentation at 38.5°C, oocytes were poured on Petri dishes and examined under
115	a stereomicroscope with a warm plate. In Experiment 1, oocytes were classified according
116	to their morphology in four groups (A, B, C and D) (Cetica, Dalvit et al. 1999; Hawk and
117	Wall 1994). Based on the outcome of Experiment 1, and to eliminate the possible
118	detrimental effect of morphological quality, only class "A" oocytes (compact-intact
119	cumulus cell layers and good morphology) were used for Experiments 2 and 3 of this
120	study. Selected COCs were washed twice in H-TALP and cultured in groups of 100 in 500
121	μ l modified bicarbonate-buffered TCM199 media, supplemented with 10% of fetal calf
122	serum (FCS); 0.4 mmol/l glutamine; 0.2 mmol/l sodium pyruvate; 0.5 mg/ml FSH, 5 mg/ml
123	LH; 1 mg/ml estradiol and gentamicin (50 mg/ml) for 24 h, at 38.5°C in 5% CO ₂ .
124	
125	2.2.2 Sperm capacitation and in vitro fertilization
126	Frozen semen straws from different bulls of the Retinta breed with a history of proven
127	fertility were thawed in a water bath at 38°C during 1 min. Viable spermatozoa were

128 selected by centrifugation through a discontinuous Percoll gradient (45 and 90% (v/v) in

129 Sp-TALP) and washed twice in warm equilibrated Sp-TALP media. The final sperm

130 concentration of $1 \ge 10^6$ sperm cells/ml was adjusted in IVF-TALP, supplemented with

- bovine serum albumin (BSA; 6 mg/ml) and heparin (100 mg/ml). Groups of 60 oocytes
- 132 were washed in 500 µl of equilibrated IVF-TALP and incubated with sperm at 38.5°C in

133 5% CO₂.

135 2.2.3 Culture of zygotes

After 20–24 h of incubation, groups of 100 presumptive zygotes were denuded by vortex in 15 ml tubes during 3 min. Thereafter, it were transferred to synthetic oviduct fluid (SOF), supplemented with BME amino acid solution and MEM non-essential amino acid solution and 5% (v/v) FCS and were cultured in 50 μ l droplets under mineral oil in groups of 25 for 72 h at 38.5°C in 5% CO₂.

141

142 2.3 Chromosome preparation

143 Chromosome preparation was performed according to our standard method (Ocana-Quero,
144 Pinedo-Merlin *et al.* 1999a). At the end of the culture period, colchicine (0.1 µg/ml) was

added to the culture media and embryos were cultured for up to 6 h. After that, embryos

146 were placed in a 500 μ l hypotonic solution of 0.88% (w/v) tri-sodium citrate for 45–60 min.

147 Thereafter, embryos were fixed mildly by pouring about 500 µl of Carnoy's 1:1 fixative

148 (one part acetic acid: one part methanol) for 10 min and placed in a 3:1 Carnoy's fixative

149 overnight. Each embryo was then fixed onto a clean glass slide and blastomeres were

150 separated using acetic acid (100%, v:v). The nucleus from each blastomere was spread with

several drops of Carnoy's 1:1 fixative. Samples were air-dried and stained with 5% Giemsa

152 solution for 10 min. Only those blastomeres containing an analyzable metaphase (intact and

non-overlapping chromosomes) were assessed under X 1250 magnification in an optical

154 microscope (Reichert-Jung Polyvar, Austria).

155

156 2.4 Cytogenetic criteria

157	Only the embryos showing more than one analyzable metaphases were included in this
158	study. Embryos with 60 chromosomes in all countable metaphases were defined as normal
159	diploids $(2n = 60)$. Those in which all analyzable metaphases contained 30 chromosomes
160	were defined as haploids. If the embryo have shown more than two sets of chromosomes
161	(3n = 90 or 4n = 120) in all blastomeres were judged as polyploids. Finally, those that
162	showed an abnormal chromosomal number were defined as aneuploids.
163	
164	2.5 Experimental design
165	2.5.1 Experiment 1
166	The aim of this experiment was to examine the incidence of morphological oocyte quality
167	on the appearance of chromosomal abnormalities in early IVP bovine embryos. A total of
168	249 oocytes were classified in four different groups (A, B, C and D) according to their
169	subjective quality as described previously. Oocytes were fertilized, cultured and
170	cytogenetically analyzed as described above.
171	
172	2.5.2 Experiment 2
173	The aim of this experiment was to evaluate the incidence of oocyte maturation time on the
174	appearance of chromosomal abnormalities in early IVP bovine embryos. In this study, a
175	total of 157 embryos derived from class "A" morphological quality oocytes were classified
176	into two groups according to their maturation period: 24 h and 36 h. Thereafter, oocytes
177	were fertilized, cultured and cytogenetically analyzed as described above.
178	

179 2.5.3 Experiment 3

180	This experiment was performed to investigate the effect of different serum supplementation
181	strategies during in vitro oocyte maturation on the percentage of chromosomal
182	abnormalities observed in early IVP bovine embryos. A total of 384 embryos derived from
183	class "A" morphological quality oocytes were produced as described previously from
184	oocytes matured in 6 groups of TCM-199 medium supplemented with: 10% ECS (n = 62;
185	prepared as described previously); 10% FCS (n = 59; F2442, Sigma Aldrich, Spain); 10%
186	ACS (n = 59; prepared as described previously); 10% of bovine amniotic fluid (BAF; n =
187	60; A5130, Sigma Aldrich, Spain); 0,6% (w/v) BSA ($n = 74$) and 10% of bovine steer
188	serum (BSS; n = 70; A9433, Sigma Aldrich, Spain) used as control. After maturation,
189	oocytes were fertilized, cultured during 72 h and cytogenetically analyzed as described
190	previously.
191	previously. 2.6 Statistical analysis
192	2.6 Statistical analysis
193	Data were analyzed using the Chi-Square procedure of the Statistical Analysis Systems
194	software (SAS Institute Inc., Cary, NC). Differences observed among treatments were
195	determined using a two factors expected proportion test. Data were significant at p<0.05.
196	
197	3 Results
198	Significant (p<0.05) effects of oocyte morphological quality, oocyte maturation time and

- 199 media serum supplementation were found on the percentage of abnormal chromosomal
- 200 complements observed across all the analyzed embryos.
- 201

202 *3.1 Experiment 1*

203	A significant (p<0.05) relationship between the oocyte quality and the ploidy of the
204	resulting embryos was found (Table 1). The number of normal diploid embryos
205	significantly (p<0.05) increased with increasing oocyte morphological quality of the
206	ocyteincreased as increase the morphological quality of the oocyte. Therefore, the lowest
207	percentage of total chromosomal abnormalities (p<0.05) were observed only in embryos
208	derived from superior quality oocytes (class "A"). When analyzing separately each kind of
209	chromosomal abnormalities, we found that the highest haploidy percentage (p<0.05) was
210	observed in embryos derived from oocytes class "C" and "D". Similarly, the percentages of
211	polyploidy and aneuploidy were statistically (p<0.05) lower in embryos derived from class
212	"A" oocytes compared to those classified as class "B", "C" and "D".
213	
214	3.2 Experiment 2
215	Chromosomal abnormality rates were significantly $(n < 0.01)$ higher in equates metured for
210	Chromosomal abnormality rates were significantly (p<0.01) higher in oocytes matured for
216	36 h than those matured for 24 h (Table 2). Interestingly, only the polyploidy rates were
216	36 h than those matured for 24 h (Table 2). Interestingly, only the polyploidy rates were
216 217	36 h than those matured for 24 h (Table 2). Interestingly, only the polyploidy rates were significantly (p<0.01) different between treatments. However, no significant (p>0.05)
216 217 218	36 h than those matured for 24 h (Table 2). Interestingly, only the polyploidy rates were significantly (p<0.01) different between treatments. However, no significant (p>0.05) differences were found between the other <u>type of chromosomal complements abnormalities</u>
216217218219	36 h than those matured for 24 h (Table 2). Interestingly, only the polyploidy rates were significantly (p<0.01) different between treatments. However, no significant (p>0.05) differences were found between the other <u>type of chromosomal complements abnormalities</u>
216217218219220	36 h than those matured for 24 h (Table 2). Interestingly, only the polyploidy rates were significantly (p<0.01) different between treatments. However, no significant (p>0.05) differences were found between the other type of chromosomal complements abnormalities (haploid and aneuploid) and maturation time (24 h and 36 h).
 216 217 218 219 220 221 	36 h than those matured for 24 h (Table 2). Interestingly, only the polyploidy rates were significantly (p<0.01) different between treatments. However, no significant (p>0.05) differences were found between the other type of chromosomal complements abnormalities (haploid and aneuploid) and maturation time (24 h and 36 h).
 216 217 218 219 220 221 222 	36 h than those matured for 24 h (Table 2). Interestingly, only the polyploidy rates were significantly (p<0.01) different between treatments. However, no significant (p>0.05) differences were found between the other type of chromosomal complements-abnormalities (haploid and aneuploid) and maturation time (24 h and 36 h). <i>3.3 Experiment 3</i> Supplementation strategies of maturation media with different serum significantly (p<0.05)
 216 217 218 219 220 221 222 223 	36 h than those matured for 24 h (Table 2). Interestingly, only the polyploidy rates were significantly (p<0.01) different between treatments. However, no significant (p>0.05) differences were found between the other type of chromosomal complements-abnormalities (haploid and aneuploid) and maturation time (24 h and 36 h). <i>3.3 Experiment 3</i> Supplementation strategies of maturation media with different serum significantly (p<0.05) influenced the incidence of chromosomal abnormalities of IVP bovine embryos (Table 3).

226 the rates of haploidy and polyploidy were significantly (p<0.05) higher in those embryos

http://www.publish.csiro.au/journals/rfd

227	maturated in the presence of ECS. However, there was no statistical (p>0.05) differences
228	between supplements for the rate of aneuploidy. Moreover, the rate of haploidy was
229	significantly (p<0.05) higher in those embryos maturated in the presence of BSA.
230	

4. Discussion

232 Chromosomal abnormalities have been suggested as a major cause of embryonic failure on 233 IVP embryos (King, Coppola et al. 2006). Previous reports demonstrated that the incidence 234 of these abnormalities appears to be influenced by methods of embryo handling used during 235 these procedures as well as suboptimal culture environments in which embryos must be 236 developed (King, Coppola et al. 2006). The present study evaluated the impact of the 237 guality of the oocytes and their in vitro maturation environment on the chromosome make-238 up of the subsequently produced embryos, which is one of those potential causes described 239 above. In this way, our results showed that initial poor quality of oocytes as well as 240 suboptimal maturation conditions produced a higher rate of chromosome abnormalities at 241 earliest stages of embryonic development. 242 The first experiment was conducted to evaluate the importance of oocyte morphology in the 243 incidence of chromosomal abnormalities in subsequent produced embryos. Previous studies 244 demonstrated that the initial quality of the oocytes had greater impact on early embryonic 245 survival, establishment and maintenance of pregnancy (Krisher 2004). In our study, the rate 246 of chromosome abnormalities in embryos was significantly affected by the morphological 247 quality of the oocytes. In this sense, it has been also demonstrated that the maturation rates 248 and embryo development of the subsequent produced embryos are strongly related with the 249 oocyte original morphology (Blondin and Sirard 1995; Long, Damiani et al. 1994). 250 However, to our knowledge, there are no previous studies that evaluate the chromosomal

251	composition of the derived embryos of morphological classified oocytes as possible cause
252	of these losses in IVP cattle embryos. In our study, we observed in matured oocytes that
253	begin to multiply after fertilization higher rates of chromosomal abnormalities associated
254	with low quality oocytes (pale and heterogeneous cytoplasm, class "D"). As a possible
255	explanation, this type of oocytes has a low density of organelles to support the meiotic
256	process appropriately that leads to higher rates of meiotic failures (Nagano, Katagiri et al.
257	2006). On the other hand, the lower incidence of morphologically normal spindles in the
258	low quality oocytes leads to higher rates of chromosomal gains or losses during replication
259	(Long, Damiani et al. 1994). In this way, embryos derived from lower-grade oocytes, with
260	poor cyitoplasmatic morphology quality (granularity or discoloration of the cytoplasm,
261	vacuolization, and incorporations such as refractile bodies), are related with pregnancy
262	rates which are five times lower than those of embryos derived from normal quality
263	oocytesrates 5 times lower than those with normal cytoplasm (Ebner, Moser et al. 2003).
264	We would like to highlight the fact that only high quality oocytes (class "A") showed a
265	lower polyploidy rate. Recent studies have shown that the incidence of polyspermic
266	fertilization, major cause of embryo polyploidy, is higher in low quality oocytes compared
267	to those with optimal morphology (Wortzman and Evans 2005). This fact can be attributed
268	to a delayed and incomplete exocytosis of the cortical granules (Wang, Hosoe et al. 1997)
269	or to a premature cortical granules release in low quality oocytes (Suzuki, Saito et al.
270	2003), causing a weaker block to polyspermy.
271	In Experiment 2, embryos derived from high quality oocytes (class "A") were differently
272	matured and cultured in vitro. A higher rate of chromosomal alterations was observed when
273	the oocyte maturation time was increased from 24 to 36 h. It has been widely demonstrated
274	that longer maturation times decreases the outcome of IVP embryos (Gliedt, Rosenkrans Jr

275 *et al.* 1996) and stimulate higher nuclear maturation rates by a greater positive feedback 276 from cumulus cells (Barrett and Albertini 2010). However, over-maturation for more than 277 24 h promotes an "aging" effect, showing signs of degeneration probably due to the 278 excessive time in sub-optimal maturation environment (Máximo, Martins da Silva et al. 279 2012). An interesting observation was that only the rates of polyploidy were significant 280 higher when the time of maturation was increased. This abnormality was noted as a major 281 cause of developmental failure on IVP embryos in mammals. It has been previously 282 suggested that maturation prepares the oocyte to interact with the fertilizing spermatozoa at 283 a particular moment in time (Dale and Defelice 2011). If the oocyte is not fertilized, the 284 maturation processes continue and the cell ages, leading to higher polyspermy rates (Tarín 285 1996). In a later study, Tarín, Trounson *et al.* (1999) also suggest that oocyte post-ovulation 286 aging may leads to a series of ultrastructural changes related to the meiotic spindle 287 integrity. Moreover, same authors suggest that these changes may produce higher rates of 288 failure in the extrusion of the second polar body by the oocyte after sperm penetration, 289 leading to higher polyplody rates. Polyspermy has been widely described as a major 290 concern particularly in pig embryos (Niwa 1993). Rather, partial induction of the acrosome 291 reaction of boar spermatozoa in IVF media and sperm fertilizing doses have been indicated 292 as the primary causes in this species (Funahashi 2003). 293 Previous authors have demonstrated the influence of the culture system upon the ploidy of 294 *in vitro* matured oocytes in human (Christopikou, Karamalegos *et al.* 2010) and domestic 295 animals (Lechniak, Szczepankiewicz et al. 2005; Ocana-Quero, Pinedo-Merlin et al. 1999b; 296 Ueno, Kurome et al. 2005). Furthermore, the same effect was observed in oocvte nuclear 297 maturation rates and blastocyst yield of IVF-derived embryos in goat (Tajik and 298 Esfandabadi 2003), porcine (Ott, Schernthaner et al. 2002) and cattle (Ocana-Quero,

299	Pinedo-Merlin et al. 1999b; Russell, Baqir et al. 2006). As a possible explanation, age
300	related changes in oocytes due to oxidative damage associated with high cellular
301	metabolism and genomic instability, (e.g., mitochondrial mutations and telomere
302	shortening) can be triggered by the environmental culture conditions (Pan, Ma et al. 2008).
303	Mainly, this can be due to a lack of energy supply by oxidative phosphorylation in the
304	mitochondria within the oocyte (Eichenlaub-Ritter, Wieczorek et al. 2011). Our study is in
305	agreement with theses hypothesis, since we found a clear influence of the culture media in
306	the ploidy of the derived embryos. However, it has been described that matured oocytes
307	appear fairly normal until resumption of maturation when they form aberrant spindles,
308	without being able to distinguish them from the normal (Ebner, Moser et al. 2003). Since
309	we cannot evaluate the chromosomal composition and meiotic spindle previous to
310	fertilization, it can be assumed that oocyte with higher level of chromosomal abnormalities,
311	produced by the suboptimal environmental conditions (A'Arabi, Roussel et al. 1997), will
312	produce embryos with an higher rate of abnormalities that can have a normal development
313	at very early stages (King, Coppola et al. 2006).
314	In Experiment 3, the higher rates of chromosomal abnormalities were observed in the
315	culture medium supplemented with ECS. It has been demonstrated that this serum
316	supplementation produces higher levels of FSH, LH and estrogens in the maturation media
317	(Ott, Schernthaner et al. 2002). These hormones have been associated with oocyte aging
318	(Liu, Feng et al. 2011), marked ultrastructural changes of embryonic cells and with higher
319	rate of blastomeric apoptosis (Ott, Schernthaner et al. 2002) and chromosomal
320	abnormalities (Vialard, Boitrelle et al. 2011). Indeed, embryos derived from these oocytes
321	can develop aberrant mitotic spindles, leading to a failure of chromatid migration to the cell

Reproduction, Fertility and Development

322	poles during cell division, DNA replication without associated cytokinesis and
323	consequently to an altered ploidy (Liu and Keefe 2002).
324	The lack of a significant difference in aneuploidy rates in the results of Experiment 2 and 3
325	suggests that maturation environment (oocyte maturation time and culture media
326	supplementation) is less involved in the appearance of this kind of chromosomal
327	abnormalities. In fact, aneuploidy have mainly been related to intrinsic factors of the
328	humans (Frumkin, Malcov et al. 2008) and bovine oocytes (Lechniak, Świtoński et al.
329	1996; Nicodemo, Pauciullo et al. 2010).
330	Previous authors suggest that post-fertilization culture environment of the developing
331	embryo can affect the incidence and severity of chromosomal abnormality rates in the
332	resulting blastocyst (Lonergan, Pedersen et al. 2004; Ulloa Ulloa, Yoshizawa et al. 2008b;
333	Xu, Wang et al. 2008). However, all of these studies evaluated the chromosomal
334	complements of derived embryos at blastocyst stage. Dieleman, Hendriksen et al. (2002)
335	suggest that the ploidy of the resulted embryos is less affected at early stages of
336	development by the culture environment. It has previously been described (Mermillod,
337	Schmaltz et al. 2010; Tajik, Beheshti-Govij et al. 2008) that long-term incubation induce
338	developmental failures in embryos due to their exposure to higher levels of toxic
339	metabolites and oxidative stress in late culture developmental stages.
340	In conclusion, morphological quality of oocytes and maturation protocols affect the
341	chromosomal abnormality rates of the subsequent IVP cattle embryos. Further studies are
342	necessary to improve the oocyte maturation protocols currently used in the <i>in vitro</i> cattle
343	embryo production industry to minimize the appearance of chromosomal abnormalities on
344	the subsequent produced embryos.
~	

346 **5. Acknowledgements**

- 347 We thank to the COVAP slaughterhouse (Pozoblanco, Spain) by provides the ovaries for
- 348 | this study. We also thank to Dr. Ann Van Soom, Ms. Petra Van Damne and Ms. Isabel
- 349 Lemanhieu for their excellent technical assistance. Sebastian Demyda is supported by a
- 350 grant from MAEC-AECID (Spain). This study was partially supported by University of
- Lomas de Zamora, Argentina (Project 13A178) and by the University of Cordoba, Spain.
- 352

6. References

A'Arabi, S.Y., Roussel, J.D., and Chandler, J.E. (1997) Chromosomal analysis of

- mammalian oocytes matured in vitro with various culture systems. *Theriogenology* 48(7),
 1173-1183.
- Alexander, B., Coppola, G., Berardina, D., Rho, G.J., St John, E., Bett, D.H., and King,
 W.A. (2005) The effect of 6-dimethylaminopurine (6-DMAP) and cycloheximide (CHX)
 on the development and chromosomal complement of sheep parthenogenetic and nuclear
- 361 transfer embryos. *Mol Reprod Dev.*
- 362

357

Barrett, S.L., and Albertini, D.F. (2010) Cumulus cell contact during oocyte maturation in
 mice regulates meiotic spindle positioning and enhances developmental competence.
 Journal of Assisted Reproduction and Genetics 27(1), 29-39.

- 366
- Bilodeau-Goeseels, S. (2006) Effects of culture media and energy sources on the inhibition
 of nuclear maturation in bovine oocytes. *Theriogenology* 66(2), 297-306.
- Blondin, P., and Sirard, M.A. (1995) Oocyte and follicular morphology as determining
 characteristics for developmental competence in bovine oocytes. *Molecular Reproduction and Development* 41(1), 54-62.
- 373
- Cetica, P.D., Dalvit, G.C., and Beconi, M.T. (1999) Study of evaluation criteria used for in vitro bovine oocyte selection and maturation. *Biocell* **23**(2), 125-133.
- 376
- Coticchio, G., Sereni, E., Serrao, L., Mazzone, S., Iadarola, I., and Borini, A. (2004) What
 criteria for the definition of oocyte quality? *Annals of the New York Academy of Sciences* **1034**, 132-144.
- 380
- 381 Christopikou, D., Karamalegos, C., Doriza, S., Argyrou, M., Sisi, P., Davies, S., and
- 382 Mastrominas, M. (2010) Spindle and chromosome configurations of human oocytes
- 383 matured in vitro in two different culture media. *Reproductive BioMedicine Online* **20**(5),
- *639-648.*

385	
386	Dale, B., and Defelice, L. (2011) Polyspermy prevention: Facts and artifacts? Journal of
387	Assisted Reproduction and Genetics 28(3), 199-207.
388	Assisted Reproduction and Genetics 20(5), 199-207.
389	Dielemen S.I. Hendriksen D.I.M. Viuff D. Themson D.D. Huttel D. Kniin H.M.
	Dieleman, S.J., Hendriksen, P.J.M., Viuff, D., Thomsen, P.D., Hyttel, P., Knijn, H.M.,
390	Wrenzycki, C., Kruip, T.A.M., Niemann, H., Gadella, B.M., Bevers, M.M., and Vos,
391	P.L.A.M. (2002) Effects of in vivo prematuration and in vivo final maturation on
392	developmental capacity and quality of pre-implantation embryos. <i>Theriogenology</i> 57 (1), 5-
393	20.
394	
395	Ebner, T., Moser, M., Sommergruber, M., and Tews, G. (2003) Selection based on
396	morphological assessment of oocytes and embryos at different stages of preimplantation
397	development: A review. Human Reproduction Update 9(3), 251-262.
398	
399	Eichenlaub-Ritter, U., Wieczorek, M., Lüke, S., and Seidel, T. (2011) Age related changes
400	in mitochondrial function and new approaches to study redox regulation in mammalian
401	oocytes in response to age or maturation conditions. <i>Mitochondrion</i> 11 (5), 783-796.
402	
403	Frumkin, T., Malcov, M., Yaron, Y., and Ben-Yosef, D. (2008) Elucidating the origin of
404	chromosomal aberrations in IVF embryos by preimplantation genetic analysis. <i>Molecular</i>
405	and Cellular Endocrinology 282 (1–2), 112-119.
406	
407	Fukui, Y., and Ono, H. (1989) Effects of sera, hormones and granulosa cells added to
408	culture medium for in-vitro maturation, fertilization, cleavage and development of bovine
409	oocytes. Journal of Reproduction and Fertility 86(2), 501-506.
410	
411	Funahashi, H. (2003) Polyspermic penetration in porcine IVM-IVF systems. Reproduction,
412	Fertility and Development 15(3-4), 167-177.
413	
414	Garcia-Herreros, M., Carter, T.F., Villagmez, D.A.F., MacAulay, A.D., Rath, D., King,
415	W.A., and Lonergan, P. (2010) Incidence of chromosomal abnormalities in bovine
416	blastocysts derived from unsorted and sex-sorted spermatozoa. Reproduction, Fertility and
417	Development 22(8), 1272-1278.
418	$= \cdots = (\cdot), = \cdots = \cdots $
419	Gliedt, D.W., Rosenkrans Jr, C.F., Rorie, R.W., and Rakes, J.M. (1996) Effects of Oocyte
420	Maturation Length, Sperm Capacitation Time, and Heparin on Bovine Embryo
421	Development. Journal of Dairy Science 79(4), 532-535.
422	Development. Vou nut of Duity Science 19(1), 552 555.
423	Hawk, H.W., and Wall, R.J. (1994) Improved yields of bovine blastocysts from in vitro-
424	produced oocytes. II. Media and co-culture cells. <i>Theriogenology</i> 41 (8), 1585-1594.
425	produced obcytes. II. We did and co-culture cells. The togenology $41(0)$, 1505-1574.
426	Kawarsky, S.J., Basrur, P.K., Stubbings, R.B., Hansen, P.J., and King, W.A. (1996)
427	Chromosomal abnormalities in bovine embryos and their influence on development.
427	Biology of Reproduction 54(1), 53-59.
428 429	Dividgy of Reproduction 34(1), 33-37.
429 430	King W A (1000) Chromosome abnormalities and programous failure in domestic animals
	King, W.A. (1990) Chromosome abnormalities and pregnancy failure in domestic animals.
431	<i>Adv Vet Sci Comp Med</i> 34 , 229-250.

432	
433	King, W.A., Coppola, G., Alexander, B., Mastromonaco, G., Perrault, S., Nino-Soto, M.I.,
434	Pinton, A., Joudrey, E.M., and Betts, D.H. (2006) The impact of chromosomal alteration on
435	embryo development. <i>Theriogenology</i> 65 (1), 166-77. [In eng]
436	
437	Krisher, R.L. (2004) The effect of oocyte quality on development. Journal of animal
438	science. 82 E-Suppl, E14-23.
439	
440	Lechniak, D., Świtoński, M., and Sosnowski, M. (1996) The incidence of bovine diploid
441	oocytes matured in vitro. <i>Theriogenology</i> 46 (2), 267-277.
441	000 yies matured in vitio. Theriogenology $40(2)$, $207-277$.
	Lashield D. Gereneralizzing D. Kenner D. Gerela L. and Geredhauschi M. (2005) WM
443	Lechniak, D., Szczepankiewicz, D., Kauss, D., Szulc, J., and Szydłowski, M. (2005) IVM
444	media, oocyte diameter and donor genotype at RYR1 locus in relation to the incidence of
445	porcine diploid oocytes after maturation in vitro. <i>Theriogenology</i> 64 (1), 202-212.
446	
447	Liu, L., and Keefe, D.L. (2002) Ageing-associated aberration in meiosis of occytes from
448	senescence-accelerated mice. Human Reproduction 17(10), 2678-2685.
449	
450	Liu, S., Feng, H.L., Marchesi, D., Chen, Z.J., and Hershlag, A. (2011) Dose-dependent
451	effects of gonadotropin on oocyte developmental competence and apoptosis. <i>Reproduction</i> ,
452	Fertility and Development 23(8), 990-996.
453	
454	Lonergan, P. (2007) State-of-the-art embryo technologies in cattle. Society of Reproduction
455	and Fertility supplement 64, 315-325.
456	
457	Lonergan, P., Pedersen, H.G., Rizos, D., Greve, T., Thomsen, P.D., Fair, T., Evans, A., and
458	Boland, M.P. (2004) Effect of the post-fertilization culture environment on the incidence of
459	chromosome aberrations in bovine blastocysts. <i>Biology of Reproduction</i> 71 (4), 1096-1100.
460	entoniosonie doenations in oovine olastoeysts. Diology of Reproduction (1), 1090 1100.
461	Long, C.R., Damiani, P., Pinto-Correia, C., MacLean, R.A., Duby, R.T., and Robl, J.M.
462	(1994) Morphology and subsequent development in culture of bovine oocytes matured in
462	vitro under various conditions of fertilization. Journal of Reproduction and Fertility 102(2),
464	361-369.
465	
466	Máximo, D.M., Martins da Silva, I.G., Mondadori, R.G., Neves, J.P., and Lucci, C.M.
467	(2012) Ultrastructural characteristics of sheep oocytes during in vitro maturation (IVM).
468	Small Ruminant Research 105(1-3), 210-215.
469	
470	Mermillod, P., Schmaltz, B., Perreau, C., Tsikis, G., Martinot, E., Cordova, A., and
471	Locatelli, Y. (2010) Early development of ruminant embryos, autonomous process or the
472	result of a positive dialog with surrounding maternal tissues? Acta Scientiae Veterinariae
473	38 (SUPPL. 2), s521-s533.
474	
475	Nagano, M., Katagiri, S., and Takahashi, Y. (2006) Relationship between bovine oocyte
476	morphology and in vitro developmental potential. Zygote 14(1), 53-61.
477	

470	
478	Nicodemo, D., Pauciullo, A., Cosenza, G., Peretti, V., Perucatti, A., Di Meo, G.P.,
479 480	Ramunno, L., Iannuzzi, L., Rubes, J., and Di Berardino, D. (2010) Frequency of aneuploidy
	in in vitro-matured MII oocytes and corresponding first polar bodies in two dairy cattle
481	(Bos taurus) breeds as determined by dual-color fluorescent in situ hybridization.
482	<i>Theriogenology</i> 73 (4), 523-9. [In eng]
483	
484	Niwa, K. (1993) Effectiveness of in vitro maturation and in vitro fertilization techniques in
485	pigs. Journal of reproduction and fertility. Supplement 48, 49-59.
486	
487	Ocana-Quero, J.M., Pinedo-Merlin, M., and Moreno-Millan, M. (1999a) Cytogenetic study
488	of in vitro-derived bovine embryos. Vet J 158(3), 228-33. [In eng]
489	
490	Ocana-Quero, J.M., Pinedo-Merlin, M., and Moreno-Millan, M. (1999b) Influence of
491	follicle size, medium, temperature and time on the incidence of diploid bovine oocytes
492	matured in vitro. <i>Theriogenology</i> 51 (3), 667-72. [In eng]
493	
494	Ott, M., Schernthaner, W., Sinowatz, F., and Wolf, E. (2002) Effects of bovine serum
495	albumin and estrous cow serum on development and ultrastructure of in vitro-produced
496	porcine embryos. Anatomia, Histologia, Embryologia 31(3), 151-157.
497	
498	Pan, H., Ma, P., Zhu, W., and Schultz, R.M. (2008) Age-associated increase in aneuploidy
499	and changes in gene expression in mouse eggs. Developmental Biology 316 (2), 397-407.
500	
501	Pereira, M.M., MacHado, M.A., Costa, F.Q., Serapiao, R.V., Viana, J.H.M., and Camargo,
502	L.S.A. (2010) Effect of oxygen tension and serum during IVM on developmental
503	competence of bovine oocytes. Reproduction, Fertility and Development 22(7), 1074-1082.
504	
505	Pontes, J.H.F., Nonato-Junior, I., Sanches, B.V., Ereno-Junior, J.C., Uvo, S., Barreiros,
506	T.R.R., Oliveira, J.A., Hasler, J.F., and Seneda, M.M. (2009) Comparison of embryo yield
507	and pregnancy rate between in vivo and in vitro methods in the same Nelore (Bos indicus)
508	donor cows. <i>Theriogenology</i> 71 (4), 690-697.
509	
510	Pontes, J.H.F., Silva, K.C.F., Basso, A.C., Rigo, A.G., Ferreira, C.R., Santos, G.M.G.,
511	Sanches, B.V., Porcionato, J.P.F., Vieira, P.H.S., Faifer, F.S., Sterza, F.A.M., Schenk, J.L.,
512	and Seneda, M.M. (2010) Large-scale in vitro embryo production and pregnancy rates from
513	Bos taurus, Bos indicus, and indicus-taurus dairy cows using sexed sperm. Theriogenology
514	74(8), 1349-1355.
515	
516	Purpera, M.N., Giraldo, A.M., Ballard, C.B., Hylan, D., Godke, R.A., and Bondioli, K.R.
517	(2009) Effects of culture medium and protein supplementation on mRNA expression of in
518	vitro produced bovine embryos. <i>Molecular Reproduction and Development</i> 76 (8), 783-793.
519	
520	Rambags, B.P.B., Krijtenburg, P.J., Van Drie, H.F., Lazzari, G., Galli, C., Pearson, P.L.,
520	Colenbrander, B., and Stout, T.A.E. (2005) Numerical chromosomal abnormalities in
522	equine embryos produced in vivo and in vitro. <i>Molecular Reproduction and Development</i>
523	72 (1), 77-87.
524	

525 Räty, M., Ketoja, E., Pitkänen, T., Ahola, V., Kananen, K., and Peippo, J. (2011) In vitro 526 maturation supplements affect developmental competence of bovine cumulus-oocyte 527 complexes and embryo quality after vitrification. Cryobiology 63(3), 245-255. 528 529 Rizos, D., Ward, F., Duffy, P., Boland, M.P., and Lonergan, P. (2002) Consequences of 530 bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: 531 Implications for blastocyst yield and blastocyst quality. Molecular Reproduction and 532 Development 61(2), 234-248. 533 534 Russell, D.F., Bagir, S., Bordignon, J., and Betts, D.H. (2006) The impact of oocyte 535 maturation media on early bovine embryonic development. Molecular Reproduction and 536 Development 73(10), 1255-1270. 537 538 Suzuki, H., Saito, Y., Kagawa, N., and Yang, X. (2003) In vitro fertilization and 539 polyspermy in the pig: Factors affecting fertilization rates and cytoskeletal reorganization 540 of the oocyte. *Microscopy Research and Technique* **61**(4), 327-334. 541 542 Tajik, P., Beheshti-Govij, R., Soleimani-Rad, J., Ghasemzadeh-Nava, H., and Mohamadi-543 Roshandeh, A. (2008) Effects of different concentrations of bovine follicular fluid and 544 estrous cow serum on development of murine 2-cell embryos. *Pakistan Journal of* 545 Biological Sciences 11(4), 628-632. 546 547 Tajik, P., and Esfandabadi, N.S. (2003) In vitro maturation of caprine oocytes in different 548 culture media. Small Ruminant Research 47(2), 155-158. 549 550 Tarín, J.J. (1996) Potential effects of age-associated oxidative stress on mammalian 551 oocytes/embryos. Molecular Human Reproduction 2(10), 717-724. 552 553 Tarín, J.J., Trounson, A.O., and Sathananthan, H. (1999) Origin and ploidy of 554 multipronuclear zygotes. *Reproduction, Fertility and Development* **11**(4-5), 273-279. 555 556 Ueno, S., Kurome, M., Ueda, H., Tomii, R., Hiruma, K., and Nagashima, H. (2005) Effects 557 of maturation conditions on spindle morphology in porcine MII oocytes. Journal of 558 *Reproduction and Development* **51**(3), 405-410. 559 560 Ulloa Ulloa, C.M., Yoshizawa, M., Komoriya, E., Mitsui, A., Nagai, T., and Kikuchi, K. 561 (2008a) The blastocyst production rate and incidence of chromosomal abnormalities by 562 developmental stage in in vitro produced porcine embryos. Journal of Reproduction and 563 Development 54(1), 22-29. 564 Ulloa Ulloa, C.M., Yoshizawa, M., Yamashita, A., Hama, S., Mitsui, A., Hashi, C., Abe, 565 566 H., Hoshi, H., Fukui, E., and Matsumoto, H. (2008b) Blastocyst production from in vitroproduced day-2 bovine embryos classified by cleavage stage, and cytogenetical evaluation 567 568 of the resultant day-8 blastocysts. Journal of Reproduction and Development 54(6), 465-569 472.

571 572 573 574	Van Soom, A., Vandaele, L., Goossens, K., de Kruif, A., and Peelman, L. (2007) Gamete origin in relation to early embryo development. <i>Theriogenology</i> 68 Suppl 1, S131-7. [In eng]
575 576 577 578	Vandaele, L., and Van Soom, A. (2011) Intrinsic factors affecting apoptosis in bovine in vitro produced embryos. <i>Verhandelingen - Koninklijke Academie voor Geneeskunde van België</i> 73 (1-2), 79-104.
579 580 581	Vialard, F., Boitrelle, F., Molina-Gomes, D., and Selva, J. (2011) Predisposition to aneuploidy in the oocyte. <i>Cytogenetic and Genome Research</i> 133 (2-4), 127-135.
582 583 584	Villamediana, P., Vidal, F., and Paramio, M.T. (2001) Cytogenetic analysis of caprine 2- to 4-cell embryos produced in vitro. <i>Zygote</i> 9 (3), 193-9. [In eng]
585 586 587 588	Viuff, D., Rickords, L., Offenberg, H., Hyttel, P., Avery, B., Greve, T., Olsaker, I., Williams, J.L., Callesen, H., and Thomsen, P.D. (1999) A high proportion of bovine blastocysts produced in vitro are mixoploid. <i>Biology of Reproduction</i> 60 (6), 1273-1278.
589 590 591 592	Wang, W.H., Hosoe, M., and Shioya, Y. (1997) Induction of cortical granule exocytosis of pig oocytes by spermatozoa during meiotic maturation. <i>Journal of Reproduction and Fertility</i> 109 (2), 247-255.
592 593 594 595 596	Wortzman, G.B., and Evans, J.P. (2005) Membrane and cortical abnormalities in post- ovulatory aged eggs: Analysis of fertilizability and establishment of the membrane block to polyspermy. <i>Molecular Human Reproduction</i> 11 (1), 1-9.
597 598 599 600	Xu, L., Wang, Y., Zhou, P., Cao, Y.X., Huang, T.H., and Chian, R.C. (2008) Cytogenetic analysis of in vivo and in vitro matured oocytes derived from naturally cycling and stimulated mice. <i>Systems Biology in Reproductive Medicine</i> 54 (3), 155-162.
601 602 603 604 605	Yang, X., Jiang, S., and Foote, R.H. (1993) Bovine oocyte development following different oocyte maturation and sperm capacitation procedures. <i>Molecular Reproduction and Development</i> 34 (1), 94-100.

Oocyte Quality	Total number						Chro	moson	nal compl	ement	ts			
	of analyzed	Normal Embryos		os	Abnormal embryos									
		embryos		Diploid		_	Total			Haploid			Polyploid	
А	60	56	93,33%	а	4	6,67%	с	1	1,67%	bc	2	3,33% ^b	1	1,67% ^b
В	65	53	81,54%	ab	12	18,46%	b	2	3,08%	b	6	9,23% ^{ab}	4	6,15% ^{ab}
С	61	45	73,77%	bc	16	26,23%	ab	6	9,84%	ab	6	9,84% ^{ab}	4	6,56% ^{ab}
D	63	39	61,90%	с	24	38,10%	а	10	15,87%	а	8	12,70% *	6	9,52% ^a

On each row, values followed by different letters (a, b and c) show statisticall significant differences (P<0.05, Expected proportion test).

Oocyte	Number of	Chromosomal complements											
maturation	embryos	Normal Embryos		Abnormal embryos									
time (hs)	time (hs) analyzed		Diploid		Total	Haploid		P	olyploid	Aneuploid			
24	77	71	92,21% ^A	6	7,79% ^B	2	2,60% ^a	3	3,90% ^A	1	1,30% ^a		
36	80	60	75,00% ^B	20	25,00% ^A	6	7,50% ^a	12	15,00% ^B	2	2,50%		

Table 2: Analysis of chromosomal complements of day 3 IVP bovine embryos from oocytes maturated by two different periods

On each row, values followed by different capital letters (A and B) show highly significant differences (P<0.01, Expected proportion test). Values followed by different lowercase letters (a and b) show significant differences (P<0.05, Expected proportion test).

Culture media	Number of		Chromosomal complements											
Suplementation	embryos	Nor	rmal Embry	/OS				Abnorm	nalen	nbryos				
	analyzed		Diploid			Total		Haploid	F	Polyploid	Aneuploid			
BSS	70	66	94,29%	а	4	5,71% [°]	2	2,86% ^b	1	1,43% ^b	1	1,43% °		
ACS	59	54	91,53%	а	5	8,47% ^c	1	1,69% ^b	3	5,08% ^b	1	1,69% ^a		
BAF	60	54	90,00%	abc	6	10,00% ^{bc}	2	3,33% ^b	2	3,33% ^b	2	3,33% ª		
BSA	74	66	89,19%	ab	8	10,81% ^{bc}	5	6,76% ^{ab}	3	4,05% ^b	0	0,00% ª		
FCS	59	46	77,97%	bcd	13	22,03% ^b	5	8,47% ^{ab}		10,17% ^{ab}	2	3,39% ^a		
ECS	62	37	59,68%	d	25	40,32% ^a	11	17,74% ^a	12	19,35% ^a	2	3,23% ^a		

Table 3: Analysis of chromosomal complements of day 3 IVP bovine embryos from oocytes maturated in different culture media

On each row, values followed by different letters (a, b and c) show statisticall significant differences (P<0.05, Expected proportion test).

BSS: bovine steer serum; ACS: anestrous cow serum; BAF: bovine amniotic fluid; BSA: bovine serum albumine; FCS: fetal calf serum and ECS: estrous cow serum