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Summary

Obstructive sleep apnea (OSA) is a sleep disorder that has been associated with the

incidence of other pathologies. Diagnosis is mainly based on the apnea–hypopnea

index (AHI) obviating other repercussions such as intermittent hypoxemia, which has

been found to be associated to cardiovascular complications. Blood-based samples

and urine have been the most utilised biofluids in metabolomics studies related to

OSA, while sweat could be an alternative due to its non-invasive and accessible sam-

pling, its reduced complexity, and comparability with other biofluids. Therefore, this

research aimed to evaluate metabolic overnight changes in sweat collected from

patients with OSA classified according to the AHI and oxygen desaturation index

(ODI), looking for potential cardiovascular repercussions. Pre- and post-sleeping

sweat samples from all individuals (n = 61) were analysed by gas chromatography

coupled to high-resolution mass spectrometry after appropriate sample preparation

to detect as many metabolites as possible. Permanent significant alterations in the

sweat were reported for pyruvate, serine, lactose, and hydroxybutyrate. The most

relevant overnight metabolic alterations in sweat were reported for lactose, succi-

nate, urea, and oxoproline, which presented significantly different effects on factors

such as the AHI and ODI for OSA severity classification. Overall metabolic alterations

mainly affected energy production-related processes, nitrogen metabolism, and

oxidative stress. In conclusion, this research demonstrated the applicability of sweat

for evaluation of OSA diagnosis and severity supported by the detected metabolic

changes during sleep.
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1 | INTRODUCTION

Obstructive sleep apnea (OSA) is a condition of disordered breathing

characterised by repeated episodes of partial (hypopnea) or total

collapse (apnea) of the upper airway during sleep, causing intermittent

hypoxemia and sleep fragmentation (Blekic et al., 2022; Pinilla

et al., 2022). The ‘gold standard’ test for OSA diagnosis is based on

the measurement of the apnea–hypopnea index (AHI) by
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polysomnography (PSG). Other parameters associated with oxygen

saturation (SpO2), such as baseline and averaged SpO2, the oxygen

desaturation index (ODI), and the percentage of total sleep time with

a SpO2 of <90% (T90), are also frequently evaluated (Mediano

et al., 2022; Randerath et al., 2021). However, OSA diagnosis is typi-

cally defined by AHI levels. According to the last International Con-

sensus Document about OSA, individuals are considered not to have

OSA when their AHI is <15 events/h; to have non-severe OSA when

their AHI is between 15 and <30 events/h; and severe OSA

when their AHI is ≥30 events/h (Kapur et al., 2017; Mediano

et al., 2022; Pinilla et al., 2022; Randerath et al., 2021). Additionally,

it is generally accepted that mild OSA (AHI between 5 and

<15 events/h) might not have significant cardiovascular consequences

(Mediano et al., 2022).

Apnea and hypopnea episodes provoke SpO2 decreases, which

have an impact on the human metabolism. Previous studies have pro-

posed that OSA diagnosis based solely on the AHI ignores the hetero-

geneity of this disease, suggesting the ODI as a complement to

adequately define OSA conditions (Blekic et al., 2022; Dewan

et al., 2015; Mediano et al., 2022; Temirbekoy et al., 2018). OSA

severity should be under especial consideration due to its relevant

association with workplace risk and traffic accidents, cardiovascular

disorders incidence, oxidative stress, neurodegenerative diseases, and

cancer (Baril et al., 2018; Cowie et al., 2021; Javaheri et al., 2017;

Jurado-Gámez et al., 2011; Mediano et al., 2022).

Untargeted metabolomics strategies have been previously used

to study metabolic alterations in patients with OSA (Ferrarini

et al., 2013; Kiens et al., 2021; Pinilla et al., 2022; Xu et al., 2016).

Metabolomics profiling of patients with OSA has been carried out in

several biofluids such as plasma, serum, urine, and saliva (Kiens

et al., 2021; Pinilla et al., 2022; Xu et al., 2016; Ząbek et al., 2015).

The most common samples used have been either plasma or serum,

where fatty acids and related biomolecules, glycolytic intermediates

and amino acids were found to be discriminant features of patients

with OSA (Zhang et al., 2021). Kiens et al. (2021) analysed dynamic

changes occurring in the blood from patients with OSA during the

sleep period. Higher levels of alanine, proline and kynurenine were

found in patients with OSA as compared to control individuals,

although they remained constant overnight, while a decrease was

observed in the control group (Kiens et al., 2021). Concerning the

urine metabolome, comparison between patients with OSA and indi-

viduals without OSA reported significant differences in acylcarnitines

and biogenic amines (Zhang et al., 2021). Changes in concentration of

cortisol and α-amylase were detected in patients with OSA using

saliva samples (Bencharit et al., 2021).

Sweat has not been evaluated as a biofluid for metabolomic anal-

ysis in the study of OSA. Its non-invasiveness and easy pre-processing

are some key aspects of this biofluid. Sweat sample preparation is

generally not required due to its simple composition (Mena-Bravo &

De Castro, 2014). Additionally, its composition may be influenced by

different pathologies and even by diurnal rhythm, which suggests

alterations due to endogenous metabolic reactions (Brunmair

et al., 2021). Brunmair et al. (2021) reported that sweat analysis could

provide complementary information of reactive oxygen species (ROS),

which could reflect the consequences of oxidative stress caused by

OSA. With these premises, this research was targeted at analysing

metabolomic changes occurring in sweat from patients with OSA with

the following aims: (i) to associate changes in concentrations of

metabolites with an OSA diagnosis; (ii) to monitor dynamic changes

occurring during sleep; and (iii) to study the correlation between OSA

severity and sweat metabolic changes.

2 | METHODS

2.1 | Selected population and study design

An observational and prospective study was selected for this research.

Figure 1 shows that 72 individuals with suspected breathing sleep dis-

orders were recruited at the Sleep Unit of Reina Sofía University Hos-

pital (C�ordoba, Spain) between October 2018 and June 2019.

Participants underwent PSG studies due to snoring, unrefreshing

sleep, and excessive daytime sleepiness (Epworth Sleepiness Scale

score >10). The PSG test was performed under standard conditions

for all participants such as, avoidance of alcohol and exciting drinks

intake 6.5 h before test (12:00 a.m.), and light dinner based on

Mediterranean diet intake 2.5 h before test (12:00 a.m.). Only four

participants required drug intake; this was not considered as this

number was not representative of the entire population (n = 72).

The Hospital Ethics Committee approved this study, and all partici-

pants completed the informed consent. In all, 11 participants were

excluded according to the exclusion criteria: sample volume <10 μL,

age <20 and >70 years, cases with a SpO2 of <94%, congestive car-

diac failure, hepatic cirrhosis, chronic renal failure, or neuromuscular

disease. The age interval was set to avoid the inclusion of subjects

with several comorbidities. Consequently, 61 middle-aged (circa

50 years of age) individuals comprised the cohort (Table 1). Accord-

ing to a recent International Consensus Document about OSA

(Mediano et al., 2022), this cohort was comprised of 20 non-OSA

subjects (AHI <15 events/h), considered as the control group, and

41 patients with OSA (AHI ≥15 events/h). Furthermore, patients

with OSA were subdivided according to OSA severity: non-severe

OSA (AHI 15 to <30 events/h) and severe OSA (AHI ≥30 events/h).

These higher levels, AHI ≥30 events/h, are particularly related to

OSA-associated cardiovascular diseases such as ischaemic heart dis-

ease, cerebral vascular disease, arrhythmia, and congestive heart fail-

ure (Mediano et al., 2022).

2.2 | Clinical procedures and measurements:
PSG study

Individuals were consecutively enrolled when newly diagnosed with

OSA according to the overnight PSG results. Standard PSG from

12:00 a.m. to 7:00 a.m. was used (Grael PSG TM; Compumedics©,

Sydney, Australia) to register three electroencephalogram channels,
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electro-oculogram, submental and tibial electromyogram, and airflow

by thermistor and pressure signal. Snoring, thoracic, and abdominal

effort, electrocardiographic derivation, and SpO2 were also monitored.

Apnea was defined as a significant decrease (>90%) in oronasal flow

for >10 s, and hypopnea as an evident decrease in airflow of >30%,

but <90%, and associated with either oxygen desaturation ≥3%

F IGURE 1 Study flow chart. GC-
QTOF, gas chromatography mass
spectrometry–Quadrupole Time-of-Flight;
OSA, obstructive sleep apnea.

TABLE 1 Characteristics of the selected cohort.

Controls (n = 20)

OSA severity

paBaseline conditions (n = 61) Non-severe (n = 14) Severe (n = 27)

Age, years, mean (SD) 58.4 (8.0) 54.9 (5.0) 55.0 (9.7) NS

Sex, n (%) Female 14 (70) 3 (21.4) 5 (18.5) 0.0006***

Male 6 (30) 11 (78.6) 22 (81.5)

Smoking, n (%) 7 (35) 4 (28.6) 8 (29.6) NS

BMI, kg/m2, mean (SD) 32.4 (6.1) 29.8 (4.1) 34.1 (5.5) NS

SBP, mmHg, mean (SD) 129.3 (10.2) 124.2 (10.2) 133.8 (10.2) 0.020*

DBP, mmHg, mean (SD) 80.5 (8.2) 73.4 (9.6) 83.7 (7.0) 0.001**

PSG measures, mean (SD) Baseline SpO2, % 95.9 (1.5) 95.9 (1.2) 95.5 (1.8) NS

Average SpO2, % 94.7 (1.6) 93.9 (1.0) 91.9 (3.5) <0.0001****

AHI, events/h 9.3 (2.8) 18.7 (3.6) 55.1 (18.8) <0.0001****

ODI, events/h 10.0 (6.0) 17.8 (6.8) 53.9 (18.5) <0.0001****

T90, % 2.3 (3.7) 2.7 (3.5) 20.5 (19.5) <0.0001****

DM, n (%) 4 (20) 3 (21.4) 5 (18.5) NS

HD, n (%) 2 (10) 0 (0) 4 (14.8) NS

RAS, n (%) 1 (5) 1 (7.1) 2 (7.4) NS

GER, n (%) 6 (30) 2 (14.3) 8 (29.6) NS

COPD, n (%) 3 (15) 1 (7.1) 1 (3.7) NS

Abbreviations: AHI, apnea–hypopnea index; BMI, body mass index; COPD, chronic obstructive pulmonary disease; DBP, diastolic blood pressure; DM,

diabetes mellitus; GER, gastro-oesophageal reflux; HD, heart disease; NS, not statistically significant; ODI, oxygen desaturation index; OSA, obstructive

sleep apnea; RAS, risk of acute stroke; SBP, systolic blood pressure; SpO2, arterial oxygen saturation measured by pulse oximetry; T90, percentage of total

sleep time with SpO2 <90%.
aChi-square of independence test was performed to evaluate the independence of the categorical outcome distribution among the severity groups,

whereas for numeric variables a Kruskal–Wallis test was applied to evaluate the significant differences between severity groups. *p < 0.05; **p < 0.01;

***p < 0.001; ****p < 0.0001.
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and/or arousal. Monitored respiratory variables were the AHI, defined

as the sum of apnea and hypopnea events occurring per hour, mini-

mum SpO2, ODI, described as the number of decreases in SpO2 ≥3%

per sleep hour, and finally, T90, which represents the hypoxemia

severity (Dutta et al., 2021). PSGs were considered valid for diagnosis

when >180 min sleep was recorded (Kapur et al., 2017).

2.3 | Sweat samples collection and storage

Sweat was sampled for each patient in the late evening (pre, before

sleep) and in the following morning (post, after sleep). Sweat was col-

lected with the Macroduct® Sweat Analysis System (Wescor Inc.,

Logan, UT, USA) according to manufacturer's recommendations. Ion-

tophoretic stimulation of sweat excretion was performed with Pilo-

gel® discs (US Patent 4,383,529; Wescor Inc.), a gel reservoir of

pilocarpine ions. The lower portion of the anterior forearm was

cleaned with ethanol and distilled water. A sweat volume average of

30 μL per individual was collected by the Macroduct device collector

over 15 min and then transferred to plastic Eppendorf microtubes and

stored at �80�C until analysis. Sweat extraction was performed

according to World Medical Association Declaration of Helsinki guide-

lines (2004).

2.4 | Metabolomic sweat profiling

For metabolomic sweat profiling, 5 μL of each sample under study

was mixed to get a sample pool destinated to the preparation of Qual-

ity Control samples (QCs) for assessment of the method performance

and variability check. Sample treatment derived from an experimental

strategy based on deproteinisation with a methanol (MeOH)–

acetonitrile (ACN) mixture before methoxymation plus silylation deri-

vatisation by following the protocol optimised by Delgado-Povedano

et al. (2016). Thus, 50 μL of 70:30 (v/v) MeOH/ACN (TraceSELECT®

grade from Sigma–Aldrich, St. Louis, MO, USA) solution were added

to 10 μL aliquots of sweat samples and homogenised in a vortex

shaker from IKA® (Wilmington, NC, USA) for 5 min at room tempera-

ture. The resulting mixture was centrifuged in a microcentrifuge Sor-

vall Legend Micro 21R from Thermo Fisher Scientific (Waltham, MA,

USA) for 5 min at room temperature and 10,000 � g. Then, the liquid

phase was isolated and transferred to a 250-μL glass insert and, after-

wards, evaporated to dryness in a Concentrator plus™ from Eppen-

dorf (Hamburg, Germany). Subsequently, the dry residue was

reconstituted in 10 μL of 40 mg/mL methoxyamine hydrochloride

(Sigma–Aldrich,) in pyridine (Merck, Darmstadt, Germany), vortexed

for 30 s and incubated at 30�C, 500 rpm for 90 min in a Thermo-

Mixer® C block heater (Eppendorf, Hamburg, Germany). After meth-

oxymation step, silylation was performed by adding 40 μL 100:1

BSTFA–TMCS solution (Sigma–Aldrich) and shaking it for 30 s before

incubation at 37�C, 500 rpm for 30 min. Finally, all the prepared ana-

lytical samples were kept at room temperature for 3 min to ensure

they were suitable for analysis.

Analyses were carried out by the same equipment and parame-

ters for gas chromatographic separation and mass spectrometric

detection purposes as those of the method developed by Delgado-

Povedano et al. (2016).

2.5 | Annotation of metabolites

Data acquired by gas chromatography mass spectrometry (MS)–

Quadrupole Time-of-Flight (GC-QTOF) in full scan mode were pro-

cessed with Unknown Analysis software (version B.07.00, Agilent

Technologies, Palo Alto, CA, USA) and treatment of these data was

performed with MassHunter Workstation software Quantitative Anal-

ysis (version B.07.00, Agilent Technologies). Annotation of metabo-

lites was performed by following the Delgado-Povedano et al. (2016)

workflow.

Annotated features were exported to Personal Compound Data-

base Library Manager (PCDL Manager) B.07.00 from Agilent Technol-

ogies and allowed to create a personalised MS library (named ‘sweat.

metabolomics.cdb’) of annotated metabolites containing the following

information: MS spectra, empirical formula, molecular mass, precursor

ion m/z (with the corresponding collision energy), and retention time.

Finally, peak areas for annotated metabolites were extracted from all

files (samples, blanks, and QCs) by Quantitative Analysis software

B.07.00 (Agilent Technologies).

2.6 | Statistical analyses

Descriptive statistics was used for characterisation of the study

cohort. Normal distributions were evaluated by Shapiro–Wilk

test. Clinical parameters were compared between controls, non-

severe and severe OSA groups by Kruskal–Wallis test and chi-

square test for continuous numerical and categorical variables,

respectively.

Peak areas for annotated metabolites were normalised by the MS

total useful signal (MSTUS) and transformed by log2 and, finally,

weighted scaling by sex was applied to minimise sex variability. This

scaling was necessary after observing that sex was the primary vari-

ability source, by a principal component analysis of metabolites nor-

malised and transformed concentrations.

Supervised analyses were performed with the fold-change (FC)

results of all metabolites, FC ([post-sleeping concentrations –

pre-sleeping concentrations]/pre-sleeping concentrations), consider-

ing controls, non-severe and severe OSA as classification groups

(by AHI and ODI levels). Additionally, correlation between the AHI

and ODI levels was evaluated by Spearman correlation.

Permanent changes were evaluated by statistical comparison

through a t test (95% confidence interval [CI]) between the concentra-

tion of each metabolite in pre-sleeping samples from control subjects

and patients with OSA. On the other hand, dynamic changes were

studied by statistical comparison through repeated measures analysis

of variance (ANOVA) and Tukey's post hoc analyses (95% CI) in
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pre- and post-sleeping samples considering controls, non-severe and

severe OSA as between-subjects factor (AHI and ODI, respectively).

3 | RESULTS

3.1 | Cohort characterisation

A description of the studied cohort is shown in Table 1, which

includes participants metadata and parameters measured in the PSG

test. The Kruskal–Wallis test was used to evaluate continuous vari-

ables between the three groups defined by AHI levels (controls/non-

OSA: AHI <15 events/h, non-severe OSA: AHI 15 to ≤AHI < 30

events/h, severe OSA: AHI ≥30 events/h), as these variables did not

follow a normal distribution. Age, body mass index (BMI; circa obese

cohort, average BMI ≥30 kg/m2) and baseline or awake SpO2 were

not significantly different between controls and OSA severity groups

(Table 1). On the other hand, the other continuous variables reported

significant differences, but these variables can be associated with

OSA disease. Systolic and diastolic blood pressure (SBP and DBP,

respectively) were significantly different when comparing the control

and OSA severity groups (Table 1). Consequently, these parameters

could be also considered to characterise OSA severity. Interestingly,

overnight average SpO2 (%) was significantly different among the

three groups, following a decreasing trend as OSA worsened.

As a complement, a chi-square test of independence revealed sig-

nificant differences in sex distribution between groups, while no inci-

dence was found for smoking (Table 1). This distribution agrees with

the literature as males generally present a higher prevalence of OSA

as compared to females (Bonsignore et al., 2019). Application of a

weighted scaling strategy to normalised (MSTUS) and transformed

(log2) data allowed minimising of sex variability (Figure 2), and this

strategy was adopted for further studies.

3.2 | Association of OSA diagnostic and sweat
metabolome profiles

Sweat samples analysis allowed the annotation of 78 tentative metab-

olites. Relative concentrations obtained in pre- and post-sleeping sam-

ples were used to obtain a data set containing FC ratios, representing

metabolic alterations overnight. A partial least-squares discriminant

analysis (PLS-DA) was performed to find discrimination patterns in

overnight changes between controls and patients with OSA

(Figure 3a). This demonstrated that the sweat metabolome is differ-

ently affected by OSA during sleep. From this point, this study was

focused on further evaluation of sweat metabolome in patients with

OSA according to severity. Figure 3b shows potential discrimination

of sweat metabolome alterations during sleep depending on the con-

dition of the individuals (controls, non-severe and severe OSA). Fur-

thermore, PLS-DAs were performed only considering patients with

OSA to evaluate discrimination patterns according to OSA severity by

using the AHI and ODI as classification parameters (Figure 3c,d),

which can be associated with OSA severity (Blekic et al., 2022; Dewan

et al., 2015). These results confirm the potential of the ODI to evalu-

ate the OSA severity situation of patients in terms of intermittent

hypoxemia as it is one of the most representative pathological pat-

terns of OSA. Variable importance plots based on scores plots from

previous PLS-DA are shown in Figure S1 to report the importance of

biomolecules on the observed discrimination. Figure 4 shows a strong

correlation between the AHI and ODI (Spearman coefficient = 0.898,

p < 0.0001). Thus, the ODI is proposed as a classification parameter

F IGURE 2 Three-dimensional principal component analysis of fold-change metabolomic profile in samples before (a) and after (b) weighted
scaling based on gender and obstructive sleep apnea severity levels.

CASTILLO-PEINADO ET AL. 5 of 14
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to discern between non-OSA and OSA cases. Analogously, the

strong correlation between the AHI and ODI supports the capability

of the latter to measure OSA severity. For this purpose, a

30 events/h ODI cut-off was set to classify patients with non-severe

and severe OSA.

3.3 | Alterations in human sweat metabolome
induced by OSA: permanent and dynamic changes

Concentrations of metabolites in pre-sleeping samples were evaluated

to detect significant differences between control subjects and

patients with OSA by a t test (95% CI). Four biomolecules reported

significant differences in sweat samples (Figure 5), which could be

attributed to long-term OSA repercussions (permanent changes).

F IGURE 3 Three-dimensional partial least-squares discriminant analysis of relative concentration changes occurring in sweat metabolome
during sleeping between: (a) control subjects and patients with obstructive sleep apnea (OSA), (b) control subjects and patients with OSA
classified by severity according to apnea–hypopnea index (AHI) levels, (c) patients with OSA classified by severity according to AHI levels (AHI
15 to <30 events/h [non-severe] and AHI ≥30 events/h [severe]) and (d) patients with OSA classified by severity according to oxygen
desaturation index (ODI) levels (ODI <30 and ≥30 events/h).

F IGURE 4 Correlation between apnea–hypopnea index (AHI,
events/h) and oxygen desaturation index (ODI, events/h) levels of
control subjects and patients with obstructive sleep apnea (OSA).

6 of 14 CASTILLO-PEINADO ET AL.
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F IGURE 5 Permanent changes in
human sweat metabolome due to
obstructive sleep apnea (OSA)
represented by Box and Whiskers’ plots
of pre-sleeping metabolites’
concentrations. Significance level of the
performed t test results between control
subjects and patients with OSA was
represented by 0.01 < p < 0.05 (*).

TABLE 2 Repeated measures
analysis of variance (dynamic changes)
results, considering obstructive sleep
apnea severity characterisation by the
apnea–hypopnea index and oxygen
desaturation index levels.

Dynamic changes

Metabolite

Repeated measures ANOVAa

OSA severity
groups

Changes during
sleeping

Interaction
effectb

AHI levels

Alanine 0.036 NS 0.011

Urea 0.0002 <0.0001

Succinate 0.0003 0.021 0.0003

Glycerate NS NS 0.047

Oxoproline 0.019 0.0027

Ribose 0.033 0.020

Tyramine NS 0.0065

Lactose 0.0025 0.00096

ODI levels

Urea 0.0002 NS 0.0001

Succinate 0.0013 0.021 <0.0001

Oxoproline 0.012 NS 0.0044

Lactose 0.0045 0.0006

Abbreviations: AHI, apnea–hypopnea index (sum of apnea and hypopnea events occurring per hour);

ANOVA, analysis of variance; NS, non-significant p values are not shown (p > 0.05); ODI, oxygen

desaturation index (number of decreases in oxygen saturation [SpO2] ≥3% per sleep hour); OSA,

obstructive sleep apnea.
aRepeated measures ANOVA was performed considering pre- and post-sleeping sweat samples whose

results represent dynamic changes during sleep in human sweat metabolome.
bInteraction effect p value adjusted by Bonferroni method.
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Pyruvate (p = 0.046) and lactose (p = 0.028) showed a significant

increase in the sweat from patients with OSA as compared to control

individuals, while serine (p = 0.016) and hydroxybutyrate (p = 0.049)

presented the opposite tendency.

Differences in the sweat metabolome of patients with OSA

during sleep were evaluated by repeated measures ANOVA by con-

sidering pre- and post-sleeping sweat samples. The AHI and ODI were

the variables used for OSA severity characterisation. ANOVA showed

F IGURE 6 Box and Whiskers’ plots of significant dynamic changes, represented by metabolites’ pre- and post-sleeping concentrations
trends, in human sweat metabolome due to obstructive sleep apnea (OSA) severity (according to apnea–hypopnea index [AHI] levels: Controls;

non-severe OSA, AHI 15 to <30 events/h; and severe OSA AHI ≥30 events/h). Significance level of the performed repeated measures analysis of
variance results between control subjects, and patients with non-severe and severe OSA with Bonferroni p adjustment denoted by *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001.
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that hypoxic events caused metabolic changes in sweat composition;

particularly, eight and four metabolites reported significant differ-

ences during sleep by considering the AHI and ODI as between-

subject factors, respectively (Table 2). Most significant dynamic

changes were observed in metabolites involved in carbohydrates,

amino acids, urea, and glutathione metabolism, besides the tricarbox-

ylic acid (TCA) cycle. Considering the AHI as the OSA severity classifi-

cation factor, three metabolites involved in carbohydrates metabolism

presented significant differences between groups overnight, lactose

and ribose between patients with severe OSA with respect to controls

and patients with non-severe OSA, while glycerate showed a signifi-

cant decrease overnight for patients with severe OSA compared to a

slight increase observed for non-severe cases (Figure 6). Significant

dynamic changes for alanine and tyramine, metabolites related to

amino acids metabolism, were found between patients with non-

severe and severe OSA (Figure 6). Succinate, a contributor to energy

metabolism (TCA cycle), had an opposite tendency overnight for

patients with non-severe and severe OSA, presenting a remarkable

increase for the latter group. Urea presented significant dynamic

changes among patients with severe OSA showing an increase over-

night in sweat concentration compared with a decrease in the other

two groups (Figure 6). In the case of oxoproline, a significant contrary

effect was found overnight for patients with non-severe and severe

OSA (Figure 6).

As expected, some metabolites such as lactose, succinate, urea,

and oxoproline commonly presented significant differences when

considering the AHI and ODI classifications of OSA severity, which

suggest that these variables could explain the progress of the disease

in a similar way (Temirbekoy et al., 2018). In fact, overnight alterations

in these metabolites per group followed a behaviour very similar to

that of those groups obtained by the AHI classification. As the ODI

can be measured by pulse oximetry, which is more cost-effective, fas-

ter, and easier to use when compared to PSG, and this parameter pro-

vides additional information about cardiovascular risk, ODI

measurement can be always considered for evaluation of suspected

OSA cases.

4 | DISCUSSION

The cohort under study was characterised by increased SBP levels in

patients with severe OSA as compared to the controls and patients

with non-severe OSA, which has been previously reported in several

studies (Crinion et al., 2019; Pio-Abreu et al., 2021). Moreover, DBP

also followed the same trend in patients with severe OSA versus the

other two groups as also described in the literature (Javaheri

et al., 2017; Johnson et al., 2019). Even though the AHI is the most

used quantitative parameter to define apnea clinical relevance, previ-

ous studies have reported the potential contribution of the ODI and

T90 values (Blekic et al., 2022; Mediano et al., 2022). In fact, the three

factors were significantly different among the groups, following an

ascendent trend from controls up to patients with severe OSA

(Table 1). In addition, overnight average SpO2 (%) was significantly

different in the three groups, with a decreasing trend as OSA

worsened, which is explained by the apnea, hypopnea, and oxygen

desaturation episode increase with OSA severity. Therefore, OSA

severity can affect the circulating oxygen content during sleep, with

a direct impact on the metabolism. Furthermore, the strong correla-

tion between the AHI and ODI suggests that both parameters would

describe efficiently and complementarily OSA cases. Even though

the AHI is the preferred parameter for general OSA classification,

several studies have reported its lower predictive value for OSA-

related consequences as compared to intermittent hypoxemia, with

a direct association to the ODI (Malhotra et al., 2015). In fact, Rashid

et al. (2021) evaluated possible appropriate cut-off values for the

ODI, recommending 15 events/h to consider an attended sleep

study.

Analysis of sweat metabolic changes before sleep and overnight

revealed significant effects in the metabolism on carbohydrates and

amino acids, energy metabolism, the urea cycle, and metabolic path-

ways related to oxidative stress due to OSA and severity stages

(Figure 8, Table 2). Overall, the results indicate that OSA is a disease

that mainly alters energy production processes in cells, as reported

in previous studies (André et al., 2020; Mediano et al., 2022; Yetkin-

Arik et al., 2019). These effects could lead to a low sleep quality and

fatigue during the day, which are normal symptoms in patients with

severe OSA (Chervin, 2000; Mediano et al., 2022). Furthermore,

these metabolic alterations could be intermediate physiopathologi-

cal mechanisms of OSA that could influence other comorbid

situations.

4.1 | Carbohydrates metabolism

Carbohydrates metabolism provides the glycolysis process with

fructose-6-phosphate through conversions of lactose to fructose.

According to our results, lactose and fructose presented higher base-

line levels in patients with severe OSA with respect to controls

(Figure 5), which has been previously observed by Xu et al. (2016).

Nevertheless, dynamic changes by group seemed to show metabolism

regulation through sweat excretion overnight, as groups with lower

lactose baseline concentrations raised during sleep while patients with

severe OSA who presented higher lactose baseline levels experienced

a decrease overnight (Figures 5 and 6). Another metabolic pathway to

glycolysis is the pentose phosphate pathway (PPP) that is activated

when cells demand for nicotinamide adenine dinucleotide phosphate

(NADPH) to reduce oxidative stress by elimination of ROS (Cho

et al., 2018). PPP activation increases the production of ribose-

5-phosphate and generates glycerate, which may contribute to glycol-

ysis flux. Figure 6 shows that patients with severe OSA presented

higher baseline concentration levels of ribose and glycerate in sweat

versus patients with non-severe OSA and controls. These results

could indicate that reduced excretion of these metabolites is con-

nected to glycolysis flux reduction (Cho et al., 2018; Xu et al., 2016;

Zhang et al., 2021), suggesting an oxidative stress minimisation as a

priority. Supporting our results, Xu et al. (2018) found higher levels of
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pentoses in the urine of paediatric patients with OSA as compared

to controls, although ribose reported the opposite behaviour (Xu

et al., 2016). In general, we observed significant dynamic changes

in carbohydrates metabolism according to OSA severity (Figures 6

and 7), alluding to short-term repercussions in human metabolism

possibly accumulated through time aggravating individuals’ OSA

condition. In fact, disorders in carbohydrates metabolism have

been observed in patients with coronary heart disease (Sun

et al., 2019). All carbohydrates-related metabolites significantly

different between the compared groups followed a contrary ten-

dency overnight for patients with severe OSA, which could suggest

an attempt of the organism to regulate carbohydrates metabolism

during sleep.

4.2 | Amino acids metabolism

Obstructive sleep apnea has been observed to induce alterations in

amino acids metabolism in previous studies (Barcel�o et al., 2017;

Kiens et al., 2021; Schmidt et al., 2022; Zhang et al., 2021). Amino

acids may contribute to several metabolic pathways, such as alanine,

which is highly associated to energy metabolism due to its easy gener-

ation from pyruvate through the Cahill cycle (KEGG, https://www.

kegg.jp/), which also implies production of urea (Kiens et al., 2021)

(Figure 8). According to our results, alanine concentrations in sweat

significantly increased overnight for patients with non-severe OSA

whereas a decrease was observed for patients with severe OSA

(Figure 6). Simultaneously, sweat levels of urea followed the opposite

trend to alanine for each group, which could indicate that

accumulation of alanine in tissues occurs during the first stages of

OSA, thus being directly excreted through sweat. However, it is worth

noting that the decreased levels of alanine and increased levels of

urea excreted overnight for patients with severe OSA could explain

metabolic shift of pyruvate metabolism towards the Cahill cycle

instead of the TCA cycle for further energy production. Additionally,

evaluation of permanent changes revealed raised pyruvate levels in

the sweat of patients with OSA as compared with control subjects

(Figure 5), which could represent a long-term consequence associated

to the previously mentioned accumulation of alanine in the organism.

It is worth noting that increased levels of alanine have been observed

in patients with coronary heart disease (Sun et al., 2019), which could

be a fatidic consequence of OSA (Peker et al., 2006).

Amino acids metabolism may progress through conversion of

TCA intermediates or biogenic amines (KEGG, https://www.kegg.jp/).

Indeed, tyrosine is one of the sources of fumarate, but this amino acid

may also be converted into its corresponding biogenic amine, tyra-

mine, to follow a different metabolic pathway. According to our

results, tyramine presented slightly lower baseline levels for patients

with severe OSA, even though after sleeping this biomolecule concen-

trations significantly increased in patients with severe OSA as com-

pared to non-severe cases (Figure 6). Contrarily, previous studies have

found increments of biogenic amines concentrations in urine and

plasma from patients with OSA compared with controls (Cho

et al., 2017; Davies et al., 2014; Kiens et al., 2021). However, accord-

ing to the literature, a general link has been found between several

metabolic pathways involving amino acids and future cardiovascular

diseases (Lind et al., 2023), which could be explained by all the previ-

ously mentioned alterations in amino acids metabolism owing to OSA.

F IGURE 7 Box and Whiskers’ plots of significant dynamic changes, represented by metabolites’ pre- and post-sleeping concentrations
trends, in human sweat metabolome owing to obstructive sleep apnea (OSA) severity according to oxygen desaturation index (ODI) levels
(Controls; non-severe OSA, ODI <30 events/h; and severe OSA, ODI ≥30 events/h). Significance level of the performed repeated measures
analysis of variance results between control subjects, and patients with non-severe and severe OSA with Bonferroni p adjustment denoted by
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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4.3 | Energy metabolism

Under low oxygen conditions the TCA cycle might be less favoured

(Ma et al., 2019; Schmidt et al., 2022; Zhang et al., 2021). As Figure 8

shows, direct contributors to this biological process such as pyruvate

and succinate presented significant differences between controls, and

patients with non-severe and severe OSA. Particularly, succinate

showed a significant decrease and increase overnight for patients with

non-severe and severe OSA, respectively. These results suggest a

metabolism regulation through patients sleep because baseline levels

were higher for patients with non-severe OSA when compared to

those with severe OSA. Additionally, Margolis et al. (2021) found

higher levels of succinate during exercise at sea level than at high alti-

tude, where participants had a reduction of oxygen consumption com-

parable to the oxygen deprivation of patients with OSA. These results

could reflect the displacement of the normal flux from pyruvate to the

TCA cycle probably caused by oxygen deprivation conditions, with

the consequent conversion of pyruvate into lactate or pyruvate excre-

tion through sweat. In fact, pyruvate presented significantly higher

levels in the sweat of patients with OSA compared with controls

(Figure 5). In addition, low succinate levels in patients with severe

OSA (Figure 6) might indicate the exploitation of metabolites involved

in the TCA cycle to compensate as much as possible for the low

energy production (Figure 8).

4.4 | Urea cycle

Urea is exclusively produced in the human liver through the urea

cycle (Matsumoto et al., 2019). Ammonia is transported as glutamine

to the liver, which has been previously found to be increased in the

serum of patients with OSA, which suggested that OSA might pro-

voke an increase in the activity of nitrogen metabolism (Kiens

et al., 2021). The urea cycle would be activated as a primary body

response to nitrogen excess and, thus, high urea levels could be found

in excretory biofluids. This interpretation would support our results of

urea dynamic changes in the sweat of control subjects, and patients

with non-severe and severe OSA (Figures 6 and 7). In fact,

F IGURE 8 Scheme of metabolic pathways involving relevant metabolites for patients with OSA severity situation.
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concentrations of metabolites involved in the urea cycle have been

found to be decreased in the blood when individuals were exposed to

oxygen deprivation (Margolis et al., 2021). In addition, urea dynamic

changes showed different tendencies among groups, which suggested

that this could be an adequate indicator of OSA severity in sweat.

Interestingly, an altered urea cycle has been reported for subjects

without coronary artery disease but a large number of risk factors

(Rubis, 2021).

4.5 | Oxidative stress

Obstructive sleep apnea induces oxidative stress in organisms owing

to the enhancement of ROS production (Cho et al., 2018; Schmidt

et al., 2022; Zhang et al., 2021). Figures 4 and 5 show that oxoproline,

a biological intermediate of glutathione, presented a significantly dif-

ferent effect overnight when comparing patients with non-severe ver-

sus severe OSA. As glutathione inactivates free radicals and favours

toxins excretion, these results manifested that oxidative stress condi-

tions vary depending on OSA severity (Frankfurter et al., 2019). Over-

all, oxoproline dynamic changes followed a descending trend

overnight, which could indicate that the organism attempts to recover

from oxidative stress while sleeping.

Additionally, hydroxybutyrate is considered a blood marker of

oxidative stress and, according to our results, this metabolite was at

lower levels in the sweat of patients with OSA compared with control

subjects (Figure 5). Supposing that those lower levels in sweat mean

accumulation of hydroxybutyrate in blood, oxidative stress conditions

for patients with OSA would be worse than those of control subjects.

This corroborates the results from previous studies such as higher

hydroxybutyrate blood levels from individuals exercising at high alti-

tude when compared to those exercising at sea level (Margolis

et al., 2021), as that situation could be comparable to oxygen depriva-

tion induced by OSA in patients. Additionally, Xu et al. (2018) found

almost double the amount of hydroxybutyrate in the urine of patients

with OSA than that in control subjects, which could reflect that most

of this metabolite is excreted preferably through urine than by sweat.

Additionally, oxidative stress has been described as highly implicated

in cardiovascular complications (Dubois-Deruy et al., 2020).

5 | CONCLUSIONS

An untargeted metabolomic strategy was applied to evaluate meta-

bolic changes occurring in sweat collected from patients with OSA.

Sweat is proposed in this study as it is collected in a non-invasive

manner and its composition simplifies both sample preparation and

detection. According to our results, the concentration changes in

some metabolites could provide information about OSA diagnosis and

its severity. Metabolic overnight alterations particularly affected the

energy production pathways, nitrogen metabolism, and oxidative

stress, whereas metabolic permanent variations due to OSA repre-

sented energy production pathways and oxidative stress. These

results can aid to interpret the aggravation of consequences derived

in patients with OSA with intermittent hypoxemia (ODI). Additionally,

this study reveals that metabolic changes induced by OSA overnight

could be a mirror of the long-term further metabolic repercussions

(permanent changes) caused by this disease, which could represent

intermediate physiopathological mechanisms that may influence car-

diovascular complications risk. Therefore, this research shows the

power of the ODI for OSA description representing intermittent hyp-

oxemia through sweat untargeted metabolomics analysis. In turn, this

biofluid shows great potential to reflect metabolic alterations due to

OSA even when comparing OSA severity grades.
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