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In these last decades there has been a big interest for studying piecewise diffeherential

systems. This is mainly due to the fact that these differential systems allow to

modelize many natural phenomena.

In order to describe the dynamics of a differential system we need to control its

periodic orbits, and in special its limit cycles. In particular providing an upper bound

for the maximum number of limit cycles that such differential systems can exhibit

would be desirable, that is to solve the extended 16th Hilbert problem. In general

this is an unsolved problem.

In this paper we give an upper bound for the maximum number of limit cycles that a

class of continuous piecewise differential systems formed by an arbitrary linear center

and an arbitrary quadratic center separated by a non-regular line can exhibit. So for

this class of continuous piecewise differential systems we have solved the extended

16th Hilbert problem, and the upper bound found is seven. The question if this upper

bound is sharp remains open.
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To solve the 16th Hilbert problem, that is, to give an upper bound for the

maximum number of limit cycles that a given family of differential systems can

exhibit, is in general an open problem. In this paper we obtain a solution

of the 16th Hilbert problem for the class of continuous piecewise differential

systems formed by a linear and a quadratic system, both having a center, whose

continuity manifold is a non-regular line. The methodology includes the use of

first integrals and the Chebyschev’s Theory.

I. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

In these last twenty years a big interest has appeared for understanding piecewise differ-

ential systems mainly due to their relevant applications in modeling many different natural

phenomena, see for instance the books of Ref. 1, 2, and 31 and the survey of Ref. 26, and

see the references cited in these books and in the survey.

In order to describe the dynamics of a differential system the periodic orbits play a main

role (specially the limit cycles, i.e. the periodic orbits isolated in the set of all periodic

orbits). Examples of relevant applications of the existence of limit cycles in the dynamics

can be found in Ref. 2, 28, 29, and 32, . . .

The existence and number of limit cycles of distinct classes of piecewise differential sys-

tems have been studied for many authors, see for instance Ref. 5–7, 9, 10, 12–16, 18–24,

being the list not exhaustive.

In the present paper we consider continuous piecewise differential systems of the form

(ẋ, ẏ) =





F1(x, y) = (f1(x, y), f2(x, y)) if (x, y) ∈ R1α,

F2(x, y) = (g1(x, y), g2(x, y) if (x, y) ∈ R2α,
(1)

where the dot means derivative in the variable t and fi, gi for i = 1, 2 are, respectively,

linear and quadratic polynomials. The regions R1α and R2α are

R1α = {(x, y) ∈ R2 : x = r cos θ, y = r sin θ, r ≥ 0, 0 ≤ θ ≤ α},

R2α = {(x, y) ∈ R2 : x = r cos θ, y = r sin θ, r ≥ 0, α ≤ θ ≤ 2π},

with α ∈ (0, π). We assume that F1(x, y) = F2(x, y) if (x, y) ∈ Lα = R1α ∩ R2α, i.e. the

piecewise differential system is continuous on Lα.
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We use a result in Ref. 16 which proves that any piecewise differential system of the form

(1) by means of a linear transformation can be transformed into a piecewise differential

system with α = π/2. Thus without loss of generality in what follows we consider α = π/2

and we shall write R1 = R1π/2, R2 = R2π/2 and L = Lπ/2.

In this paper (ẋ, ẏ) = F1(x, y) will be a linear differential system having a center, and

(ẋ, ẏ) = F2(x, y) will be a quadratic differential system having a center, simply called

quadratic center.

In Ref. 23 it was proved that any linear differential system having a center can be written

of the form

ẋ = −αx− (α2 + ω2)y + β, ẏ = x+ αy + γ, (2)

with ω > 0, α, β, γ ∈ R, α ̸= 0 and it has the first integral

H1(x, y) = (x+ αy)2 + 2(γx− βy) + y2ω2. (3)

So in this paper equation (ẋ, ẏ) = F1(x, y) will be system (2) and for the equation (ẋ, ẏ) =

F2(x, y) we will consider the following generic quadratic polynomial differential system (sim-

ply quadratic system in what follows)

ẋ = c0 + c1x+ c2y + c3x
2 + c4xy + c5y

2, ẏ = d0 + d1x+ d2y + d3x
2 + d4xy + d5y

2,

(4)

and we will impose that it has a center.

Our objective is to provide an upper bound for the maximum number of limit cycles that

these continuous piecewise differential systems can exhibit. The main result of the paper is

the following one.

Theorem 1. Seven is an upper bound for the maximum number of limit cycles that the

continuous piecewise differential systems separated by the non-regular line L and formed by

a linear differential center in the region R1 and a quadratic center in the region R2, or vice

versa, can exhibit.

The proof of Theorem 1 is given in section II. However it is unknown if this upper bound

is reached.
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II. PROOF OF THEOREM 1

In order to find an upper bound for the maximum number of limit cycles that the con-

tinuous piecewise differential system (2)-(4) can exhibit, we must impose two conditions to

these systems. The first condition is about the continuity of the piecewise differential system

along the separation line L. The second condition is that the quadratic system (4) must

have a center.

After a rescaling of the variables x, y and the time t we can consider α = 1 in system (2).

Now imposing the continuity of the piecewise differential system along the line L, we obtain
the following values for the coefficients of system (4)

c0 = β, c1 = −1, c2 = −ω2 − 1, c3 = 0, c5 = 0, d0 = γ, d1 = 1, d2 = 1, d3 = 0, d5 = 0.

Then the differential systems (2) and (4) become

ẋ = −x− (1 + ω2)y + β, ẏ = x+ y + γ, (5)

and

ẋ = β − x− (1 + ω2)y + c4xy, ẏ = γ + x+ y + d4xy, (6)

respectively, and they coincide on the line L. Note that c24+d24 ̸= 0, otherwise the differential

system (6) would not be a quadratic system.

Now we shall study the conditions in order that the quadratic system (6) has a center.

We consider different cases.

Case 1: c4 + d4 = 0. In this case we shall prove that the quadratic system (6) never has a

center. Computing the unique equilibrium point of system (6), we obtain that

(x1, y1) =

(
− β + γ(1 + ω2)

d4(β + γ) + ω2
,
β + γ

ω2

)
,

where we assume that d4(β + γ) + ω2 ̸= 0, otherwise system (6) has no equilibria for

c4 + d4 = 0.

The equilibrium point (x1, y1) could be a center if the matrix of the linear part of (6) at

that point has a zero trace and the discriminant of the characteristic polynomial of such a
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matrix is negative. These two conditions become

β + γ

ω2
+

β + γ(1 + ω2)

d4(β + γ) + ω2
= 0,

d24(d4(β + γ)2 + 2(β + γ)ω2 + γω4)2

ω4(d4(β + γ) + ω2)2
− 4d4(β + γ)− 4ω2 < 0,

and so, we can obtain that

β = −d4γ + (1−
√
(1− d4γ))ω

2

d4
, γ =

1− k2

d4
, (7)

where we have introduced a new positive parameter k ∈ R. Under these assumptions, the

equilibrium point (x1, y1) could be a weak focus or a center. In order to prove that it is a

center, we apply Theorem 2 given in the Appendix. To do that, we must write system (6)

with the parameters β, γ given in (7) as in the form of Theorem 2. The first step, consists

in applying the change of variables X = x − x1 and Y = y − y1, to move the equilibrium

point to the origin of coordinates. After this change of variables, system (6) writes

ẋ = −kx− (k + ω2)y − d4xy, ẏ = k(x+ y) + d4xy, (8)

where we have renamed the new variables (X, Y ) by (x, y).

Now if we write the real Jordan form of the linear part of system (8) at the origin, we get

J =


 0 −

√
kω

√
kω 0


 ,

and for this we do a new change of variables (x, y) → (u, v) given by


u

v


 =




0 1

−
√
k

ω
−
√
k

ω





x

y


 .

Then, the quadratic system (8) becomes

u̇ = −v − d4√
kω

u2 − d4
k
uv, v̇ = u. (9)

For system (9) the coefficients of Theorem 2 are A = a = d = 0, b = d4/(
√
kω) and

C = d4/k. Then the conditions for having a center at the origin of system (9) cannot be

fulfilled, and so the equilibrium is not a center.
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Case 2: c4 + d4(1 + ω2) = 0. In this case we also prove that the quadratic system (6) never

has a center.

Computing the equilibrium points of system (6), we get that if c4 = −d4(1+ω2), we have

only one fixed point, namely

(x1, y1) =

(
−β + γ(1 + ω)2

ω2
,

β + γ

ω2 − d4 (β + γ(1 + ω2))

)
.

From now on we assume that Q = ω2 − d4 (β + γ(1 + ω2)) ̸= 0, otherwise there is no

equilibrium point of system (6). We distinguish two different subcases.

Subcase 2.1: β + γ(1 + ω2) ̸= 0. A necessary condition for (x1, y1) to be a center is that

the determinant Q of the matrix J of the linear part of system (6) at this point must be

positive. Moreover, the trace of J must be zero, an so we obtain

d4 =
2(β + γ)ω2 + (β + 2γ)ω4

(β + γ(1 + ω2))2
. (10)

Then the discriminant of the characteristic polynomial of J is ∆ = −4Q < 0, and so the

equilibrium point (x1, y1) is either a weak focus or a center. In order to check if it could be

a center, we will apply Theorem 2 given in the appendix.

First we write system (6) in the normal form of Theorem 2. We start by applying the

change of variablesX = x−x1, Y = y−y1, so that the equilibrium point (x1, y1) is translated

to the origin of coordinates (X, Y ). Then we get the system

ẋ =
1 + ω2

(β + γ(1 + ω2))2
[
(β + γ)(β + γ(1 + ω2))

(
x+ (1 + ω2)y

)
− 2ω2(β + γ − (β + 2γ)ω2)xy

]
,

ẏ = − 1

(β + γ(1 + ω2))2 (1 + ω2)

[
(β + γ(1 + ω2))

(
(β + γ(1− ω4))x+ (β + γ)(1 + ω2)2y

)

−
(
ω2(1 + ω2)(2(β + γ) + (β + 2γ)ω2)

)
xy
]
,

(11)

where we have renamed the new variables (X, Y ) as the original ones (x, y).

Now we write the linear part of the system (11) at the origin in its real Jordan normal

form, i.e.

J =


 0 −l

l 0


 , where ℓ =

√
−(β + γ)ω

√
1 + ω2

√
β + γ(1 + ω2)

.

We must assume β + γ ̸= 0, otherwise the eigenvalues of the equilibrium point at the origin

of coordinates are both zero, and consequently the equilibrium point cannot be a center.
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Now we do the changes of variables (x, y) → (u, v) given by


u

v


 =


 1 0

ℓ

ω2

ℓ(1 + ω2)

ω2




x

y


 .

Then after a rescaling in the time variable (multiplying by the factor 1/ℓ), the quadratic

system (11) becomes

u̇ = −v +
(β + γ)ω (2(β + γ) + (β + 2γ)ω2))√
1 + ω2 (−(β + γ)(β + γ(1 + ω)2))3/2

u2 +
ω2 (2(β + γ) + (β + 2γ)ω2)

(1 + ω2)(β + γ)(β + γ(1 + ω2))
uv,

v̇ = u.

(12)

For system (12) the coefficients A, a and d of Theorem 2 are A = a = d = 0. Then the

conditions for having a center at the origin of system (12) are

(i) b = C = 0, (ii) C = 0, (iii) b = 0, (iv) C = b = 0,

using the notations of Theorem 2. Then, we only have to study the cases when b = 0 and

C = 0, because conditions (i) and (iv) are particular cases of (ii) and (iii).

However, the condition (ii) is not possible because c4 + d4 ̸= 0 and being d4 as in (10),

we obtain that

c4 + d4 =
ω4 (2(β + γ) + (β + 2γ)ω2)

(β + γ(1 + ω2)2
̸= 0,

and so C ̸= 0. For the same reasons, the condition (iii) b = 0, can not be possible in this

case because β + γ ̸= 0. We conclude that for the hypotheses in Subcase 2.1, system (6)

never has a center.

Subcase 2.2: β+γ(1+ω2) = 0. Now the new obtained condition in order to have a matrix of

the linear part of system (6) with positive determinant and zero trace is γ = β = 0. In this

situation, the equilibrium (x1, y1) is at the origin and the discriminant is ∆ = −4ω2 < 0.

Hence the origin is either a center or a weak focus. System (6) in this case becomes

ẋ = −x− (1 + ω2)y − d4(1 + ω2)xy, ẏ = x+ y + d4xy, (13)

In order to apply Theorem 2 of the appendix to system (13) we shall write its linear part

at the origin in its real Jordan normal form, i.e.

J =


 0 −ω

ω 0


 ,
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and, we do the changes of variables (x, y) → (u, v) given by


u

v


 =


 1 0

1

ω

1 + ω2

ω




x

y


 .

Then after a rescaling in the time variable (multiplying by the factor 1/ω), the quadratic

system (13) becomes

u̇ = −v +
d4
ω
u2 − d4uv, v̇ = u. (14)

For system (14) the coefficients A, a and d in Theorem 2 are all zero, and so the conditions

for having a center are b = 0 or C = 0. However both conditions are not satisfied, because

d4 ̸= 0. In conclusion there is no a center in Subcase 2.2.

Case 3: c4 + d4 ̸= 0, c4 + d4(1 + ω2) ̸= 0 and R = (−d4β + c4γ + ω2)2 + 4(β +

γ) (c4 + d4(1 + ω2)) ≤ 0. Computing the equilibrium points of system (6) we see that

if R < 0 then all equilibria are complex, and so the quadratic system (6) cannot have a

center. On the other hand, if R = 0 the unique equilibrium point is the point

(
d4β − c4γ + ω2

2(c4 + d4)
,− −d4β + c4γ + ω2

2 (c4 + d4(1 + ω2))

)
.

This equilibrium point comes from the collision of the two equilibrium points (x1, y1) and

(x2, y2) of the Case 4, which are a saddle and a center. It is well-known that when a saddle

and a center coalesce the resulting point is a saddle-node, and so in this case the quadratic

system (6) cannot have a center.

Case 4: c4 + d4 ̸= 0, c4 + d4(1 + ω2) ̸= 0 and R = (−d4β + c4γ + ω2)2 + 4(β +

γ) (c4 + d4(1 + ω2)) > 0. The equilibrium points of system (6) are

(x1, y1) =

(
d4β − c4γ + ω2 +

√
R

2(c4 + d4)
,−−d4β + c4γ + ω2 +

√
R

2 (c4 + d4(1 + ω2))

)
,

(x2, y2) =

(
d4β − c4γ + ω2 −

√
R

2(c4 + d4)
,−−d4β + c4γ + ω2 −

√
R

2 (c4 + d4(1 + ω2))

)
.

The equilibrium point (x1, y1) is a saddle because the determinant of the matrix of the

linear part of system (6) at it is negative. However the determinant of the matrix of the

linear part of system (6) at the equilibrium point (x2, y2) is non-negative and so, it could be

a center. A necessary condition in order that this equilibrium point be a center is that the
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discriminant of the characteristic polynomial of the matrix of the linear part of the system

at that equilibrium be negative, i.e.

∆ = (c4 + d4)
2(d24(L

2 + d24β
2 − 2L(8 + d4β))− 2c34(L+ d4(β − γ))γ + c44γ

2 + 2c4d4(−L(16 + L)

+ d24β
2 + d4(L− d4β)γ) + c24(L

2 + 2L(−8 + d4β) + d24(β
2 − 4βγ + γ2))) + 2(c4 + d4)(d

3
4(L

2

+ d4β(1 + d4β)− L(17 + 2d4β)) + c44γ − c4d
2
4(L(31 + L)− d4(β + d4β

2 − γ)

+ 2d4(L− d4β)γ)− c24d4(15L+ d4(β + γ + 2d4βγ − d4γ
2))− c34(L+ d4(β − γ − d4γ

2)))ω2

+ (c44 + d44(1 + L2 + d4β(4 + d4β)− 2L(10 + d4β))− 2c4d
3
4(2(8L− d4β)− d4(2− L+ d4β)γ)

− c24d
2
4(2 + 12L+ d4γ(4− d4γ)))ω

4 − 2d24(c
2
4 − d24(1− L+ d4β) + c4d

2
4γ)ω

6 + d44ω
8 < 0,

(15)

where R = L2. We introduce the new parameters k ∈ R \ {0} verifying ∆ = −k2. Then the

parameters β and γ in terms of k and L write

((c4 + d4)
2 + d24ω

2)2β = c4(c4 + d4)
2k2 − L(5c34 + 9c24d4 + 3c4d

2
4 − d34 − c24d4L)

+ (c4 + d4)(c
2
4 − d24 + c4d4k

2 − 5c4d4L+ 2d24L)ω
2 − d24(c4 + 2d4 − d4L)ω

4

− d34ω
6 − 5d24L)ω

2 + d34ω
4 + ((c4 + d4)(2c

2
4 + 4c4d4 + 2d24 + c24L− c4d4L)

+ d4(4c
2
4 + 8c4d4 + 4d24 − c4d4L)ω

2 + 2d24(c4 + d4)ω
4),

((c4 + d4)
2 + d24ω

2)2γ = d4(c4 + d4)
2k2 + L(c34 − 3c24d4 − 9c4d

2
4 − 5d34 + c4d

2
4L)

− (c4 + d4)(c
2
4 − d24 − d24k

2 + 5d24L)ω
2 + d34ω

4 +
√
4L− k2((c4 + d4)(2c

2
4

+ 4c4d4 + 2d24 − c4d4L+ d24L) + d4(2c
2
4 + 4c4d4 + 2d24 + d24L)ω

2).

(16)

Another necessary condition in order that the equilibrium point (x2, y2) be a center is that

the trace of the matrix of the linear part of system (6) at this equilibrium point be zero.

Imposing this condition and using (16) we get that L = k2/4. Using this relation the

parameters β and γ become

β =
(k2 − 4ω2) (−4c34 + c24d4(k

2 − 4) + 4c4d
2
4(1 + ω2) + 4d34(1 + ω2)2)

16 ((c4 + d4)2 + d24ω
2)

2 ,

γ =
(k2 − 4ω2) (4c34 + 4c24d4 + c4d

2
4(k

2 − 4)− 4d34(1 + ω2))

16 ((c4 + d4)2 + d24ω
2)

2 .

(17)

Under these assumptions the equilibrium point (x2, y2) could be a weak focus or a center.

In order to ensure that it is a center we must apply Theorem 2 given in the appendix. For
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this we need to write system (6) with the parameters β, γ given in (17) in the normal form

of Theorem 2. We first make the change of variables X = x − x2, Y = y − y2 so that

the equilibrium point becomes at the origin origin of coordinates (X, Y ). Doing so we get

system

ẋ =
1

4((c4 + d4)2 + d24ω
2)

[
(−4c24 − 4d24(1 + ω2) + c4d4

(
k2 − 4(2 + ω2)

)
x

−
(
c24(4 + k2) + 8c4d4(1 + ω2) + 4d24(1 + ω2)2

)
y
]
+ c4xy,

ẏ =
1

4((c4 + d4)2 + d24ω
2)

[(
4(c4 + d4)

2 + d24k
2
)
x+

(
4c24 + 4d24(1 + ω2) + c4d4(8− k2 + 4ω2)

)
y
]

+ d4xy.

(18)

where we have renamed the new variables (X, Y ) as the old ones (x, y).

Now we write the linear part of the system (18) at the origin in its real Jordan normal

form, i.e.

J =




0 −k

2
k

2
0


 ,

for this we do the changes of variables (x, y) → (u, v) given by


u

v


 =




1 1 +
d4ω

2

c4 + d4

− d4k

2(c4 + d4)

c4k

2(c4 + d4)





x

y


 .

Then after a rescaling in the time variable (multiplying by the factor 2/k), the quadratic

system (18) becomes

u̇ = −v +
2c4d4(c4 + d4)

k ((c4 + d4)2 + d24ω
2)
u2 +

4(c4 + d4) (c
2
4 − d44(1 + ω2))

k2 ((c4 + d4)2 + d24ω
2)

uv − 8(c4 + d4)
2 (c4 + d4(1 + ω2))

k3 ((c4 + d4)2 + d24ω
2)

v2,

v̇ = u.

(19)

For system (19) the coefficients A and a of Theorem 2 are A = a = 0. Then the conditions

for having a center at the origin of system (19) are

(i) b = C = 0, (ii) C = 0, (iii) b + d = 0, (iv) C = 3b + 5d = bd + 2d2 = 0,

using the notations of Theorem 2. We see that conditions (i) and (iv) are particular cases

of condition (ii), and so the necessary conditions are reduced to b + d = 0, or C = 0. We

consider both cases separately.
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Subcase 4.1: b+ d = 0. The condition b+ d = 0 is equivalent to

(c4 + d4) (4c
2
4 + 4d24(1 + ω2) + c4d4(8− k2 + 4ω2))

k3 ((c4 + d4)2 + d24ω
2)

= 0. (20)

Since d4(c4+ d4) ̸= 0 (note that if d4 = 0, then c4 = 0 which is not possible), we obtain that

ω2 = −4(c4 + d4)
2 − k2c4d4

4d4(c4 + d4)
> 0,

otherwise we cannot have a center. We recall that c4 ̸= 0, otherwise from (20) the above

condition is never satisfied. System (19) with the obtained value of ω2 has a center at the

origin, and we can compute a first integral of it, see for instance Ref. 25 and 30.

Now we will show that the piecewise differential system (5)-(6) with the obtained values

of β, γ and ω2 has at most seven limit cycles. We first rewrite systems (5)-(6) and their first

integrals in terms of the parameters k,c4 and d4. Then the lineal center becomes

ẋ =
d4k

2 − 4(c4 + d4)

4d4(c4 + d4)
− x+

c4 (4(c4 + d4)− d4k
2)

4d4(c4 + d4)
y, ẏ =

1

d4
+ x+ y, (21)

having the first integral becomes

H1(x, y) =
2

d4
x+

(
4(c4 + d4)− k2d4

2d4(c4 + d4)

)
y + x2 + 2xy − c4

(
4(c4 + d4)− k2d4

4d4(c4 + d4)

)
y2; (22)

and the quadratic center writes

ẋ =
d4k

2 − 4(c4 + d4)

4d4(c4 + d4)
−x+c4

(
4(c4 + d4)− k2d4

4d4(c4 + d4)

)
y+c4xy, ẏ =

1

d4
+x+y+d4xy, (23)

with the first integral

H2(x, y) = e4d4(c4+d4)(d4x−c4y)
(
4(c4 + d4)(1 + d4x)− k2d4

)k2d24 (1 + d4y)
4(c4+d4)2 . (24)

Consider a limit cycle that cuts the line L in the two points (x, 0) and (0, y) with x, y > 0.

Then these points must satisfy the following two equations

e1 = H1(x, 0)−H1(0, y) = 0, e2 = H2(x, 0)−H2(0, y) = 0.

In order to study the solutions of the system e1 = e2 = 0 we do the change of variables

(x, y) → (X, Y ) defined through

x = − 1

d4
+

1

2

√
c4(d4k2 − 4c4 − 4d4)

d4(c4 + d4)
(Y −X), y =

1

c4
+X + Y.
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Note that under the assumptions of Subcase 4.1 the term (c4(d4k
2−4c4−4d4))/(d4(c4+d4)) >

0. With this change of variables equation e1 = 0 becomes

e1 = (4(c4+d4)−d4k
2)(4c4(c4+d4)

2+c4d
2
4k

2)4(−4c24−8c4d4−4d24+d24k
2+4c24d4(4(c4+d4)−d4k

2)XY ) = 0,

where we have removed the positive denominator 16d34(c4+d4)
6. Solving the equation e1 = 0

with respect to the variable Y we get

Y =
4(c4 + d4)

2 − d24k
2

4c24d4(4(c4 + d4)− d4k2)X
.

Now we introduce Y in e2 = 0 and we can rewrite the resulting condition e2 = 0 as e2 =

a0f0 + a1f1 + a2f2, being

f0 = X

4(c4 + d4)
2

k2d24 , a0 = 4(c4 + d4)− d4k
2,

f1 = X
1+

4(c4 + d4)
2

k2d24 , a1 = 4d4(c4 + d4),

f2 = e
(c4+d4)((2(c4+d24)−d24k

2)+4c4d
2
4X

2(4(c4+d4)−d4k
2))

c4d
2
4k

2X(4(c4+d4)−d4k
2)

(
4c24(4(c4 + d4)− d4k

2)X + 4(c4 + d4)
2 − d24k

2
) 4(c4+d4)

2

d24k
2 ,

a2 = −4
− 4(c4+d4)

2

d24k
2 c

− 8(c4+d4)
2

d24k
2

4 (4(c4 + d4)− d4k
2)

1− 4(c4+d4)
2

d24k
2 .

The number of limit cycles of the piecewise differential system (21)-(23) depends on the

number of positive solutions of the equation e2 = 0. Therefore in order to obtain an upper

bound for the number of positive solutions of e2 = 0 we use the theory of Chebyschev, see

Ref. 17 and 27 for details. Note that the functions {f0, f1, f2} are analytic in (0,+∞), and

f0 does not vanish in (0,+∞). The Wronskian W [f0, f1] is

W [f0, f1] = X

8(c4 + d4)
2

k2d24 ̸= 0 for x ∈ (0,+∞).

Moreover the Wronskian W [f0, f1, f2] is

W [f0, f1, f2] = (c4 + d4)e
(c4+d4)((2(c4+d24)−d24k

2)+4c4d
2
4X

2(4(c4+d4)−d4k
2))

c4d
2
4k

2X(4(c4+d4)−d4k
2) X

−4+
8(c4 + d4)

2k2

d24

(
4c24(4(c4 + d4)− d4k

2)X + 4(c4 + d4)
2 − d24k

2
)−2+

4(c4+d4)
2

d24k
2 P6(X),

where

P6(X) = C0 + C1X + C2X
2 + C3X

3 + C4X
4 + C5X

5 + C6X
6,

12



with

C0 = (c4 + d4)(2c4 + 2d4 − d4k)
4(2c4 + 2d4 + d4k)

4,

C1 = −2c4d4(2c4 + 2d4 − d4k)
3(2c4 + 2d4 + d4k)

3(4c4 + 4d4 − d4k
2)(4c4 + 4d4 + d4k

2),

C2 = −4c4d
2
4(2c4 + 2d4 − d4k)

2(2c4 + 2d4 + d4k)
2(4c4 + 4d4 − d4k

2)(−8c34 − 8c24d4 + 8c4d
2
4 + 8d34

+ 12c34k
2 + 12c24d4k

2 − 2c4d
2
4k

2 − 2d34k
2 − 3c24d4k

4 + c4d
2
4k

4),

C3 = −32c24d
2
4(2c4 + 2d4 − d4k)(2c4 + 2d4 + d4k)(4c4 + 4d4 − d4k

2)2(4c44 + 8c34d4 − 8c4d
3
4 − 4d44

− 4c34d4k
2 − 5c24d

2
4k

2 + d44k
2 + c24d

2
4k

4),

C4 = 16c24d
3
4(c4 + d4)(2c4 + 2d4 − d4k)(2c4 + 2d4 + d4k)(4c4 + 4d4 − d4k

2)2(32c34 + 36c24d4 + 8c4d
2
4

+ 4d34 − 8c24d4k
2 − d34k

2),

C5 = 128c44d
4
4(c4 + d4)(2c4 + 2d4 − d4k)(2c4 + 2d4 + d4k)(4c4 + 4d4 − d4k

2)3,

C6 = 256c64d
4
4(c4 + d4)(4c4 + 4d4 − d4k

2)4.

Using the Descartes rule of signs with the help of the instruction Reduce of the algebraic

manipulator Mathematica we obtain that the maximum number of positive solutions of the

polynomial P6(X) = 0 is four taking into account their multiplicities. If these four solutions

are simple, then applying Theorem 1.2 of Ref. 27, with n = 2, ν1 = ν0 = 0 and all µ = 0,

we obtain that the maximum number of positive zeros of the Wronskian W [f0, f1, f2] is 7

(we recall that among the four possible positive real roots of P6 = 0 there is also a possible

simple positive real root of 4c24(4(c4 + d4) − d4k
2)X + 4(c4 + d4)

2 − d24k
2 = 0). If some of

the roots of the polynomial P6(X) is not simple, then after a small perturbation it splits in

simple roots, and we apply the previous argument. The proof of Theorem 1 is done in this

case.

Subcase 4.2: C = 0. In this case it follows from system (19), that

C = −4(c4 + d4) (c
2
4 − d24(1 + ω2))

k2 ((c4 + d4)2 + d24ω
2)

= 0

if and only if c24 = d24(1 + ω2), (i.e. ω2 = (c4/d4)
2 − 1) because c4 + d4 ̸= 0. Since the trace

of the matrix of the linear part of system (6) at the equilibrium (x2, y2) must be zero, we

obtain the following condition

d4(d4β − c4γ + ω2 −
√
R)

c4 + d4
+

c4(d4β − c4γ − ω2 +
√
R)

c4 + d4(1 + ω2)
= 0;

which is equivalent to

d4(d4β − c4γ)

c4 + d4
= 0 that is d4β − c4γ = 0.

13



So if β = c4γ/d4, and the determinant of the linear part of system (6) at the equilibrium

(x2, y2) is positive, i.e. (c4 + d4)
2 + 4c4d

2
4γ > 0 we have a center at (x2, y2) and so as in

Subcase 4.1 we can compute a first integral of it.

Now we will show that the piecewise differential system (5)-(6) with the obtained values

of β and ω has at most three limit cycles. We first rewrite systems (5)-(6) and their first

integrals in terms of the parameters k,c4 and d4. Then the lineal center becomes

ẋ =
c4γ

d4
− x− c24

d24
y, ẏ = γ + x+ y, (25)

having the first integral becomes

H1(x, y) = 2γx− 2γc4
d4

y + x2 + 2xy +
c24
d24

y2; (26)

and the quadratic center writes

ẋ =
c4γ

d4
− x− c24

d24
y + c4xy, ẏ = γ + x+ y + d4xy, (27)

with the first integral

H2(x, y) = (c4 + d4 − d24γ − d24x+ c4d4y − d34xy)e
d4(d4x−c4y)

c4+d4 . (28)

Consider a limit cycle that cuts the line L in the two points (x, 0) and (0, y) with x, y > 0.

Then these points must satisfy the following two equations

e1 = H1(x, 0)−H1(0, y) = 0, e2 = H2(x, 0)−H2(0, y) = 0.

Solving the equation e1 = 0 with respect to the variable x we get

x = − c4
d4

y and x = −2d4γ − c4y

d4
.

Setting x = −c4y/d4 into e2 we get e2 = 0, so we have a continuum of solutions, and

consequently they do not produce limit cycles.

On the other hand setting x = −(2d4γ− c4y)/d4 into e2 = 0 we get (after multiplying by

ec4d4y/(c4+d4))

c4 + d4 − d24γ + c4d4y − e−
2γd42

c4+d4 (c4 + d4 + d24γ − c4d4y) = 0. (29)

So equation e2 = 0 can be written as e2 = c0f0 + c1f1 + c2f2 = 0 with

f0 = 1, c0 = c4 + d4 − γd24,

f1 = y

(
1 + e

2d4(c4y−γd4)
c4+d4

)
, c1 = c4d4,

f2 = e
2d4(c4y−γd4)

c4+d4 , c2 = −(c4 + d4 + γd24).

14



The number of limit cycles of the piecewise differential system (25)-(27) depends on the

number of positive solutions of the equation e2 = 0. Therefore in order to obtain an upper

bound for the number of positive solutions of e2 = 0 we use the theory of Chebyschev, see

Ref. 17. Note that the functions {f0, f1, f2} are analytic in (0,+∞). The Wronskian

W [f0, f1] =
2c4d4
c4 + d4

e
2d4(c4y−d4γ)

c4+d4 ̸= 0 for x ∈ (0,+∞).

Moreover the Wronskian

W [f0, f1, f2] =
4c24d

2
4

(c4 + d4)2
e

2d4(c4y−d4γ)
c4+d4

(
e

2d4(c4y−d4γ)
c4+d4 − 1

)
,

only vanishes on y = d4γ/c4. Applying Corollary 1.4 of Ref. 27, we obtain that the maximum

number of positive zeros of the of equation (29) is three. Therefore in this case the continuous

piecewise differential system can have at most three limit cycles. The proof of Theorem 1 is

completed.

III. CONCLUSIONS

It is known that continuous piecewise differential systems formed by two linear-quadratic

isochronous centers separated by a straight line do not have limit cycles Ref. 11, and if both

systems are linear centers and the separation manifold is a non-regular line then they also

do not have limit cycles, see Ref. 9.

In this paper, we have extended the study of giving an upper bound on the maximum

number of limit cycles that a certain continuous system separated by a regular line can have.

More precisely, we deal with the class of continuous piecewise linear-quadratic centers which

are separated by a non-regular line. In fact, for this class of continuous differential systems

we find that seven is an upper bound for the maximum number of limit cycles that they can

exhibit, i.e. for these classes of differential systems we have solved the 16th Hilbert problem.
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IV. APPENDIX. THE KAPTEYN–BAUTIN THEOREM.

The following result gives us the characterization of quadratic centers.

Theorem 2 (Kapteyn–Bautin Theorem). A quadratic system that has a center at the origin

can be written in the form

ẋ = −y − bx2 − Cxy − dy2,

ẏ = x+ ax2 + Axy − ay2.
(A.1)

This system has a center at the origin if and only if, at least one of the following conditions

holds

(i) A− 2b = C + 2a = 0,

(ii) C = a = 0,

(iii) b+ d = 0,

(iv) C + 2a = A+ 3b+ 5d = a2 + bd+ 2d2 = 0.

For a proof of this result see Theorem 8.15 of Ref. 4.
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25V.A. Lunkevich & K.S. Sibirskǐi, [1982] “Integrals of a general quadratic differential system

in cases of the center”, (Russian) Differentsial’nye Uravneniya 18, no. 5, pp. 786–792;

translation in Differential Equations 8, no. 5, pp. 563–568.

26O. Makarenkov & J. S. W. Lamb [2012], “Dynamics and bifurcations of nonsmooth sys-

tems: a survey”, Physica D 241, 1826–1844.

27D. Novaes & J. Torregrosa [2015], “On extended Chebyshev systems with positive

accuracy”, Journal of Mathematical Analysis and Applications, 448, 171–186, doi:

10.1016/j.jmaa.2016.10.076.

28B. van der Pol [1920], “A theory of the amplitude of free and forced triode vibrations”,

Radio Review (later Wireless World) 1, 701–710.

29B. van der Pol [1926], “On relaxation-oscillations”, The London, Edinburgh and Dublin

Phil. Mag. & J. of Sci. 2, 978–992.

30D. Schlomiuk [1993], “Algebraic particular integrals, integrability and the problem of the

18



center”, Trans. Amer. Math. Soc. 338, pp. 799–841.

31D. J. W. Simpson [2010], Bifurcations in piecewise-smooth continuous systems, (World Sci.

Ser. Nonlinear Sci. Ser. A, vol. 69, World Scientific, Singapore).

32A.M. Zhabotinsky [1964], “Periodical oxidation of malonic acid in solution (a study of the

Belousov reaction kinetics)”, Biofizika 9, 306–311.

19


