
Citation: García-Ruiz, P.;

Romero-Ramrize, F.J.;

Muñoz-Salinas, R.;

Marín-Jiménez, M.J.;

Medina-Carnicer, R. Large-Scale

Indoor Camera Positioning Using

Fiducial Markers. Sensors 2024, 24,

4303. https://doi.org/10.3390/

s24134303

Academic Editor: Jianguo (Jack) Wang

Received: 17 June 2024

Revised: 27 June 2024

Accepted: 30 June 2024

Published: 2 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Large-Scale Indoor Camera Positioning Using Fiducial Markers
Pablo García-Ruiz 1 , Francisco J. Romero-Ramirez 2 , Rafael Muñoz-Salinas 1,3,* , Manuel J. Marín-Jiménez 1,3

and Rafael Medina-Carnicer 1,3

1 Departamento de Informática y Análisis Numérico, Edificio Einstein, Campus de Rabanales,
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Abstract: Estimating the pose of a large set of fixed indoor cameras is a requirement for certain appli-
cations in augmented reality, autonomous navigation, video surveillance, and logistics. However,
accurately mapping the positions of these cameras remains an unsolved problem. While providing
partial solutions, existing alternatives are limited by their dependence on distinct environmental
features, the requirement for large overlapping camera views, and specific conditions. This paper
introduces a novel approach to estimating the pose of a large set of cameras using a small subset
of fiducial markers printed on regular pieces of paper. By placing the markers in areas visible to
multiple cameras, we can obtain an initial estimation of the pair-wise spatial relationship between
them. The markers can be moved throughout the environment to obtain the relationship between
all cameras, thus creating a graph connecting all cameras. In the final step, our method performs a
full optimization, minimizing the reprojection errors of the observed markers and enforcing physical
constraints, such as camera and marker coplanarity and control points. We validated our approach
using novel artificial and real datasets with varying levels of complexity. Our experiments demon-
strated superior performance over existing state-of-the-art techniques and increased effectiveness in
real-world applications. Accompanying this paper, we provide the research community with access
to our code, tutorials, and an application framework to support the deployment of our methodology.

Keywords: indoor camera positioning; camera pose estimation; fiducial marker; video surveillance

1. Introduction

Estimating the positions of a large set of indoor fixed cameras is an open problem
in computer vision. Installing a large set of cameras on the ceiling of a building (e.g.,
every two meters) would allow for a new set of applications in areas such as autonomous
navigation, motion capture, augmented reality, video surveillance, and logistics [1–5].

This task is particularly challenging because of variable lighting, diverse architectural
layouts, and the need for non-intrusive installations [6–10].

Existing solutions for fixed camera pose estimation are available for motion capture
(MoCap) systems [11–14], where typically a small subset of cameras is placed around the
tracking area where the movements of a person or object are tracked using reflective mark-
ers. The calibration of such methods requires a relatively large overlap between cameras,
and they are typically designed to work at room level, not scaling well to large scenarios.

Camera pose estimation has also been tackled using various methodologies that are
prominently divided into feature-based and marker-based techniques. Feature-based
approaches are prevalent, including simultaneous localization and mapping (SLAM) [15]
and structure from motion (SfM) [16]. SLAM often requires dense environmental features
and substantial overlap between successive camera views, making it unsuitable for large
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indoor camera positioning. Although SfM is more focused on reconstructing the observed
scene, the process requires estimating the camera poses. SfM techniques have expanded
the camera pose estimation scope but continue encountering significant challenges. They
rely heavily on distinct environmental features and require overlapping camera views for
effective functionality. Despite offering a more suitable solution than SLAM methodologies
for some scenarios, these constraints often limit the applicability of SfM in environments
where such conditions are not readily met.

Recently, marker-based systems [17–19] have emerged as an alternative to feature-
based approaches. These systems utilize artificial markers as reference points within the
scene to facilitate marker and camera pose estimation, thereby simplifying the process and
enhancing robustness by reducing the dependency on environmental features. However, it
presents drawbacks, such as a reliance on unique marker identification, which makes them
unsuitable for camera pose estimation in large indoor environments.

This paper proposes a novel approach to estimate the pose of an arbitrarily large
number of fixed cameras in indoor environments using fiducial markers. Our approach
requires cameras to be visually connected by at least a small field of view so there is a path
connecting all cameras throughout the environment. The relative pair-wise camera poses
are estimated by placing a small subset of markers in the overlapping areas between them.
This process is illustrated in Figure 1.

Once a picture of the markers is taken with a subset of connected cameras, the markers
can be repeatedly moved to the next subset of connected cameras until all camera rela-
tionships are obtained. Consequently, our method requires only a very small subset of
markers to be printed to accurately obtain the poses of any number of cameras. Then, a
full optimization is run to minimize the reprojection error and other error terms, including
spatial knowledge about the particular environment being mapped.

c 1c 2c 3c 4

c 1
c 2

c 3
c 4

b)

a)

2
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23

c 1c 2
c 2c 3

c 3c 4

Figure 1. Overview of the camera pose estimation process using fiducial markers indoors. (a) Per-
spective view of a corridor showing four cameras (represented as blue pyramids) with the movement
path of the fiducial markers to sequentially capture snapshots. (b) Top-down view of the corridor
illustrating the placement and movement of markers relative to the camera positions.



Sensors 2024, 24, 4303 3 of 21

This is the first work, to our knowledge, that tackles the problem of large indoor fixed
camera pose estimation using fiducial markers. Consequently, we had to create datasets to
validate our proposal and compare it with state-of-the-art related works. Our experiments
show the validity of the proposed method and demonstrate that most related works cannot
solve the problem because the very limited field of view between the cameras makes
them fail.

The rest of this work is organized as follows. Section 2 reviews related works, empha-
sizing significant methodologies and advancements in camera pose estimation. Section 3
details the methodology of our proposed approach, elaborating on the technical innova-
tions. Section 4 describes the experimental setup and discusses the results obtained, which
validated the effectiveness of our approach. Section 5 concludes this paper by discussing
the implications of our findings and suggesting avenues for future research.

2. Related Works

Camera pose estimation encompasses various methodologies designed to determine
the orientation and location of cameras within a specific environment. Initially similar
to object positioning, which offers diverse approaches, as detailed in studies like the
ones discussed by Guan et al. [20] on 6DoF object pose estimation using cutting-edge
technologies, the practical requirements differ notably. In real-world scenarios, particularly
indoors, cameras are often placed in less accessible areas, such as ceilings, complicating
direct object positioning methods. Therefore, methodologies that perform well in controlled
or laboratory settings, such as those employed in MoCap systems [11–14], may not be
directly applicable to more general indoor camera positioning.

One of the techniques used regardless of camera location to estimate the camera
pose is based on keypoint information. This approach involves detecting and matching
distinctive image features (keypoints) to estimate relative camera poses. Known as pho-
togrammetry, this technique enables the extraction of dense 3D geometric information
from overlapping stereoscopic images, facilitating the accurate reconstruction of real-world
cameras [21]. There are two primary approaches in multi-camera pose reconstruction via
keypoint-based information.

The first approach is simultaneous localization and mapping (SLAM), which is tailored
for cameras that navigate an environment. Recent developments, such as those proposed
by Romero-Ramirez et al. in [22] and by Campos et al. [23], demonstrate the efficacy of this
methodology for moving cameras in dynamic environments. However, SLAM solutions
excel particularly well when numerous frames, which can be treated as different camera
views, are well-correlated, orderly, and have sufficient overlap to reconstruct the scene
accurately. This level of correlation and overlap is not always achievable in real-world
indoor camera setups, where cameras are typically arranged efficiently but not necessarily
optimally for SLAM requirements.

The second approach to multi-camera pose reconstruction utilizes structure from
motion (SfM) techniques, which comprise a significant branch of multi-camera photogram-
metry. As outlined by Ullman [24], SfM is a robust methodology for reconstructing 3D
structures from 2D image sequences by simultaneously estimating camera parameters
and scene structure. Traditional SfM pipelines include keypoint detection and matching,
bundle adjustment, and loop closure mechanisms, which are essential for precise recon-
structions. Several software solutions exist, such as Pix4D [25], OpenDroneMap [26], and
COLMAP [27]. Nevertheless, these methods heavily rely on the environment having distin-
guishable features and adequate overlap between camera views to function effectively.

Recently, deep learning has enhanced SfM by improving the feature detection and
matching, and directly predicting the depth and pose. Convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) have been employed to improve the ro-
bustness and accuracy of SfM pipelines. Techniques such as those proposed by Wang
et al. [28] and Ren et al. [29] leverage deep learning models to refine the reconstruction
process, leading to better performance in challenging scenarios. Nonetheless, these ap-
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proaches still depend on the distinguishable features of the environment and their presence
in overlapping camera views.

A novel alternative that leverages deep learning to enhance traditional SfM methods is
Gaussian splatting. This technique, originally proposed by Kerbl et al. [30], utilizes neural
networks to model scenes with a continuous volumetric function. Gaussian splatting can
handle complex scenes with remarkable accuracy and provides a smooth reconstruction
process, thereby showing significant advancements over traditional discrete representations.
Tools such as the one provided by PolyCam [31] facilitate rapid testing and deployment
of this method. Nevertheless, the efficacy of Gaussian splatting is still dependent on the
quality of the underlying SfM reconstruction from which it derives.

Alternatively, some researchers proposed using fiducial markers (such as ArUco [32])
to improve the pose estimation process. Marker-based systems are particularly beneficial in
controlled environments where markers can be strategically placed to ensure visibility and
minimize ambiguity. These systems circumvent the need for abundant environmental features
and extensive overlapping between camera views. They require only the presence of at least
one common marker within the scope of each camera pair to accurately position every camera
in a shared reference system. In [18], the authors propose a novel SLAM method that gracefully
combines keypoints and fiducial markers, which represent long-term features unaffected by
lighting conditions.

Another such method is MarkerMapper [17], which can be seen as an SfM method that
uses fiducial markers instead of keypoints. MarkerMapper aims to estimate the position
of a moving camera in an indoor environment. To do so, a large set of fiducial markers is
placed on the walls and ceiling, and their position is estimated from pictures taken by a
moving camera. It allows for the creation of a map of markers so that later, the position
of another camera can be estimated by an image showing a single marker. This method is
mainly conceived as a cheap localization method in robotic and virtual reality applications
with low resources.

Although MarkerMapper focuses on estimating marker poses, not camera poses, they
are computed as part of the optimization process. Thus, we can use this method to compare
with our proposal. However, this method has several drawbacks. First, a large set of
unique markers is needed to perform the reconstruction, which is especially challenging
as the environment to map becomes larger. Second, the method relies solely on marker
reprojection errors, omitting potential enhancements from additional information, such
as control points or assumptions regarding the actual locations of cameras and markers,
which may be easy to know in advance and beneficial for the reconstruction.

This paper proposes a novel approach to estimating the poses of cameras in large
indoor environments from images showing fiducial markers that, unlike MarkerMapper,
can be reused. Our method can obtain the poses of an unlimited number of cameras using as
low as nine different markers, as shown in our experiments. In addition, our method allows
for including knowledge about the environment to improve the reconstruction results, such
as control points and certain restrictions about the camera and marker distribution.

3. Proposed Method

This section outlines the proposed methodology for estimating the positions of indoor
cameras using fiducial markers. Our method estimates the relative positions between
pairs of cameras by analyzing the markers simultaneously seen in the overlapping field
of view. Given a group of cameras sharing a common field of view, a set of markers is
placed, and images are captured with the cameras. For each camera, the relative positions
of the visible markers relative to the camera are computed and used to obtain the pair-
wise relationships between all the cameras involved. As a consequence, it creates a local
pose graph connecting the cameras. The local pose graph errors are optimized by jointly
minimizing the projection errors of the markers.

The process is repeated for all camera groups, ensuring at least one common camera
between groups. This approach lets us connect groups with at least one camera, creating
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a global graph of poses so that there is a connection between any pair of cameras in the
graph. In the global pose graph, the minimum expanding tree with the lowest pose error is
selected and the camera poses are used as the starting solution for global optimization. The
optimization aims to reduce the projection errors of the markers observed in the images
and restrictions to mitigate the doming effect [33] and ensure proper scaling.

3.1. Mathematical Definitions

This section provides some initial concepts and mathematical definitions used in
this paper.

First, let us denote by pa ∈ R3 a three-dimensional point in an arbitrary reference
system a. To express such a point in another reference system, i.e., pb, it must undergo
a rotation followed by a translation. Let us denote by

(r, t) | r, t ∈ R3, (1)

the rotation and translation r = (rx, ry, rz) and t = (tx, ty, tz). The rotation matrix R can be
obtained from r using the Rodrigues’ formula [34]:

R = I3×3 + r sin α + r2(1 − cos α), (2)

where I3×3 is the identity matrix and r denotes the matrix

r =

 0 −rx/α ry/α
rz/α 0 −rx/α
−ry/α rx/α 0

 (3)

such that α = ||r||2.
Then, using t, we can obtain the 4 × 4 SE(3) homogeneous transformation matrix

θba =

[
R t⊤

0 1

]
(4)

that transforms points from a to b as follows:[
p⊤

b
1

]
= θba

[
p⊤

a
1

]
(5)

Consequently, the transformation from c to b (θbc) followed by the transformation from
b to c (θcb) can be concatenated as a matrix multiplication into a unique transformation θac
as follows:

θac = θabθbc. (6)

A three-dimensional point p ∈ R3 will project at a camera’s pixel u ∈ R2 using the
pinhole camera model. Assuming that the camera parameters are known, the projection
can be obtained as a function Ψ:

u = Ψ(δ, θ, p), (7)

where δ refers to the camera’s intrinsic parameters and θ refers to the camera pose from
which the image was acquired, i.e., the transformation that moves a point from an arbitrary
reference system to the camera one.

3.2. Cameras, Markers, and Groups

We shall define a camera cj and the set of cameras C by

C = {cj|j = 1 . . . nc}. (8)

Our ultimate goal is to estimate the pose θcj of each camera, i.e., a transformation that
moves points from the global reference system (grs) to the camera reference system (crs).
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To solve our problem, we create camera groups:

G = {gi|i = 1 . . . ng, gi ∩ gj ̸= ∅, ∀i, j} (9)

A group gi = {cj ∈ C} consists of a set of cameras with overlapping views. We place
markers in that area and capture an image with each one of the cameras of the group
(Figure 2a). We shall denote

M(gi) = {ml |l = 1 . . . ngi}. (10)

as the set of makers placed in the group gi, where ml is a marker.

c 1 c 2 c 3
b)

c) d)

a)

m 2

m 1

m 1

m 1

m 2

m 3

m 2

m 3

m 2

m 3

c 2
c 1

c 3

c 1 c 1c 2 c 2

c 3 c 3
Figure 2. Camera groups. (a) Example of a camera group, where the cameras are represented as blue
pyramids. (b) Images captured with these cameras. (c) Pose quiver for this example. (d) Camera
poses graph for this example.

The projections of the four corners of a marker allow us to estimate the transform
θ

gi
cj ,ml from the marker reference system (mrs) to the reference system of the camera cj by
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minimizing the reprojection error from 3D to 2D point correspondences [35,36]. Let us
define the following:

ml,1=( s/2, −s/2, 0 ),
ml,2=( s/2, s/2, 0 ),
ml,3=( −s/2, s/2, 0 ),
ml,4=( −s/2, −s/2, 0 ),

(11)

as the corners of a square planar marker ml , with sides of length s. These points are in the
marker reference system, which is at its center. Also, we shall denote by

m
gi ,cj
l,k , k = 1 . . . 4, (12)

the projections of the corner markers ml in the camera cj of a group gi.
When a marker is visible in two cameras of a group, it provides an estimation of the

relative pose between them. Our method relies on that idea to create a graph where nodes
represent cameras and edges represent their relative poses. For each group, a subgraph
is created, and the set of all groups creates a global graph that describes the pair-wise
relationship of all the cameras in the environment. The rest of this section explains in detail
how the process is carried out.

3.3. Group Optimization

As already indicated, we call group gi a set of cameras with a common field of view.
A set of markers ml is placed in the common field of view and captures images from all
the cameras. Figure 2 helps to understand the explanation of this section. In the example,
the first group (g1) has three cameras c1, c2, and c3 and three markers m1, m2, and m3. As
shown in the picture, not all cameras need to see all markers, but they must have at least a
common marker.

We shall denote by

O(gi) = {(cj, ml), cj ∈ gi, ml ∈ M(gi)} (13)

the set of camera–marker observations. In our example (Figure 2b),

O(g1) = {(c1, m1), (c1, m2), (c2, m1), (c2, m2), (c2, m3), (c3, m2), (c3, m3)} (14)

For every marker ml detected by a camera cj, it is possible to obtain the transformation
θ

gi
cj ,ml of moving points from the marker to the camera using the 3D–2D correspondences of

its four corners [35,36]. Then, using the common markers in the camera pairs, it is possible
to obtain their relative pose as follows:

θ
gi ,ml
cj ,cr = θ

gi
cj ,ml

(
θ

gi
cr ,ml

)−1
, (15)

so that θ
gi ,ml
cj ,cr represents the transformation from camera cj to cr, and ()−1 denotes the

inverse transformation.
As represented in Figure 2c, using all possible combinations, a pose quiver is obtained,

where nodes represent camera poses and edges represent pair-wise camera relationships.
From all possible edges between cameras, the one with the lowest reprojection error
is selected, obtaining a pair-wise pose graph θ

gi
cj ,cr between the cameras of the group

(Figure 2d).
The next step is to refine the poses by minimizing the reprojection errors of all markers

across all the cameras in the group. To do so, all cameras and markers must refer to
a common reference system. Thus, we assume that one of the cameras (e.g., c1) is the
common reference system. Then, the transformation of all cameras θ

gi
cj can be easily

obtained as follows:
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θ
gi
cj =


0 i f j = 1

θ
gi
c1,cj ∀i ̸= 1

(16)

Please note that θ
gi
cj = 0 means that the resulting 4 × 4 matrix is the identity matrix

(see Section 3.1).
Similarly, the transformation of each marker with respect to the common reference

system θ
gi
ml is obtained as follows:

θ
gi
ml = θ

gi
cj θ

gi
cj ,ml . (17)

Therefore, the reprojection error of the markers visible in the camera group gi can be
computed as the difference between the observed marker corner m

gi ,cj
l,k and its estimated

projection:

Erp(gi) = ∑
(cj ,ml)∈O(gi)

4

∑
k=1

∥m
gi ,cj
l,k − Ψ

(
δcj ,

(
θ

gi
cj

)−1
θ

gi
ml , ml,k

)
∥2.

(18)

Therefore, in the example of Figure 2, the camera poses of the graph can be refined by
minimizing the reprojection error

(θ̇
g1
c1 , θ̇

g1
c2 , θ̇

g1
c3 , θ̇

g1
m1 , θ̇

g1
m2 , θ̇

g1
m3) =

arg min
θ

g1
c1 ,θ

g1
c2 ,θ

g1
c3 ,θ

g1
m1 ,θ

g1
m2 ,θ

g1
m3

Erp(g1) (19)

using the sparse Levenberg–Marquardt algorithm.
Once the camera group gi is optimized, a refined local pose graph is created by

obtaining the camera pair-wise relationships from the optimized results as follows:

θ̇
gi
cj ,cr =

(
θ̇

gi
cj

)−1
θ̇

gi
cr (20)

3.4. Global Graph

After processing all groups individually, the local pose graphs obtained are merged
into a global pose graph from which initial pose estimations for each camera can be obtained.
To do so, first, one of the cameras is selected as the global reference system (e.g., c1) and
then the shortest paths to all other nodes are calculated. An initial global camera pose θ̂cj is
calculated from its path. For instance, if the shortest path from camera c1 to camera c10 is
(c1, c3, c8, c10), then

θ̂c10 = θc1,c3 θc3,c8 θc8,c10 (21)

where θcj ,cr are the pair-wise relations between cameras expressed in the graph’s edges.
Given the initial camera poses from Equation (21), the initial marker pose in the global

reference system can be computed as follows:

θ̂
gi
ml = θcj θ

gi
cj ,ml (22)

where cj is any of the cameras that observe the ml marker in group gi. Please notice here
that markers do not need to have unique IDs in our work since each marker ID is tied to
a group. As a consequence, we can use the same marker in different groups.

The camera and marker poses previously calculated in Equations (21) and (22) are in
an arbitrary reference system (camera c1). However, in practical applications, it is desirable
to refer all camera and marker poses to a CAD drawing (or map) of the building. For this
purpose, control points are used. A control point {pcj ∈ R3} is the true position of camera
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cj in the map, and by Π, we denote the set of control points. Given at least three control
points, the Horn [37] algorithm is used to find the best-fitting rigid transformation θcp by
moving the camera and marker poses to the map reference system:

θcj = θcp θ̂cj (23)

and
θ

gi
ml = θcp θ̂

gi
ml (24)

If no control points are indicated, θcp can be regarded as zero and the Equations (23) and (24)
have no effect, i.e., θcj = θ̂cj and θ

gi
ml = θ̂

gi
ml

3.5. Global Optimization

The camera and marker poses calculated using Equations (23) and (24) are initial
estimations obtained from the global graph and the control points. In this final step, these
estimations are further refined, combining multiple objectives into a single global error Eg
by using appropriate weights:

Eg = Erp + Ecc + Ecm + Ecp (25)

The error term Erp represents the reprojection error of all visible markers across all the
groups and is calculated as follows:

Erp = wrp ∑
G

Erp(gi), (26)

where Erp(gi) is defined in Equation (18) and wrp is a normalization term used so that
Erp = 1 when all errors Erp(gi) are equal to one. It is calculated as the inverse of the total
number of projected points, i.e.,

wrp = 1/

∑
G

∑
(cj ,ml)∈O(gi)

4

∑
k=1

1

. (27)

The normalization factor allows for combining the different error terms independently
of the number of optimized markers, cameras, or control points.

The error term Ecc is optional and is employed to enforce coplanarity in cameras
that are indeed known to be in the same plane. This is typical in indoor scenarios, where
cameras are placed on the ceiling. Let us use Θo = {cj} to denote a set of cameras that are
all in the same plane. If there are several different planes, which is a typical situation in
indoor scenarios when modeling multiple floors, there is a Θo set for each plane. Then,
Θ = {Θo} is the set of all Θo sets and the error term is calculated as follows:

Ecc = wcc ∑
Θo∈Θ

∑
θcj∈Θo

dt
2
(

t(θcj),P(Θo)
)

, (28)

where P(Θo) is the fitting plane determined from the camera poses in the set Θo, and dt
denotes the Euclidean distance between the translational component t (Equation (1)) of the
camera pose θcj and the plane. In this case, the normalization factor wcc is such that Ecc = 1
when all the distances are equal to 1 centimeter. A pixel of error in Erp is assimilated to a
centimeter of error in Ecc.

Similarly, the error term Ecm is optional and is employed to enforce coplanarity in
markers that are indeed known to be in the same plane. This is a typical situation in indoor
scenarios where markers are placed on the floor. The term is calculated as follows:

Ecm = wcm ∑
Υo∈Υ

∑
θ

gi
ml
∈Υo

4

∑
k=1

dt
2
(

t(θgi
ml ,k

),P(Υo)
)

(29)
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where P(Υo) is the fitting plane of coplanar markers Υo, and dt denotes the Euclidean
distance between the translational component of the marker pose θ

gi
ml ,k

and the plane. wcm

is such that Ecm = 1 when all the distances are equal to 1 centimeter.
Finally, the optional term Ecp refers to the use of control points, which forces cameras

to be at the specified locations using the term

Ecp = wcp ∑
pcj∈Π

∥pcj − t(θcj)∥
2. (30)

As can be observed, the errors consist of measuring the distance between the camera
positions and their ground-truth positions. wcp is such that Ecp = 1, i.e., all the distances
equal 1 mm, and thus, more precision is required for these points than in the previous
two cases.

4. Experiments

This section explains the experiments that were carried out to validate our proposal.
To our knowledge, there are no public datasets to test our method, so we had to create
them. We designed five experiments, with some using synthetically created datasets and
the rest using real datasets created in our building.

The synthetic datasets were created using Blender [38] (version 4.0), which facilitated
the generation of precise camera positions and markers that served as our ground truth.
First, a virtual scene was created, including walls, floors, and lighting conditions, that
mimicked a real-world environment. Then, simulated cameras were strategically placed,
ensuring a realistic perspective. Afterward, each fiducial marker was meticulously posi-
tioned on top of the floor, presented as square planes, to emulate their typical usage in
real-world settings. To compare the results of our method with MarkerMapper [17], we
placed a set of unique synthetic ArUco markers. However, please notice that our method
does not need a large set of unique markers to be employed, i.e., the mapping can be done
using a small subset of markers that are reused.

We first modeled a long corridor (Figure 3). It was a simple scenario in which we
tested different configurations of cameras and markers. The results are shown in Section 4.1.
Then, in Section 4.2, we show the modeling of a more complex scenario that represented an
apartment of eight rooms distributed on two floors and connected by hallways (Figure 4).

a)

C1004

b) C1120

  45 m~

2.2 m

C1004

C1020

2.2 m

C1104

C1120

C1020
C1104

  45 m~

Control
Points

Control
Points

Figure 3. Synthetic corridor datasets. (a) Representation of the synthetic corridor (Dataset A), where
cameras are shown as blue pyramids. The left images show two of the camera views generated with
Blender. (b) Representation of Dataset B, along with some sample images.
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Figure 4. Synthetic duplex datasets. (a) Dataset A. (b) Dataset B. (c) First room of Dataset A. (d) First
floor of Dataset A. See text for further details.

Additionally, two other experiments with real data from our lab were created. In this
case, the ground-truth camera positions were manually obtained. These datasets were
particularly interesting for evaluating the ability of our method to generalize correctly in
real environments. In the first real dataset (Section 4.3), we reconstructed two adjacent
laboratories connected by a room (Figure 5). The second real dataset (Section 4.5) consisted
of the entire building floor of our lab, which comprised four large corridors connected by
a large hall. For these datasets, only twelve ArUco markers were employed. They were
printed on paper and moved along the building.

C4

C5

C7

Dataset A
Dataset B

Control
Points

C15

C7

C15

6.2 m~~

12 m~~

C4

C5

Figure 5. Adjacent rooms datasets. Three-dimensional reconstruction of the environment for
visualization purposes. The camera configurations of both datasets are represented by blue (Dataset
A) and orange (Dataset B) pyramids.

The experiments utilized a computer with an AMD Ryzen 7 5800U processor and
Radeon graphics operating on an Ubuntu 20.04.5 OS. The average processing time per
dataset was 50 min. We would also like to indicate that we used the ArUco detector [39],
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which was shown to be the most robust against various image artefacts, such as poor illumi-
nation and blurring [40]. Nevertheless, blurring was not a problem in this scenario because
the cameras were fixed, and we could ensure good illumination during the recording
session since it was a controlled environment.

The following methods were considered to compare the performance of our method
with other approaches. First, MarkerMapper [17], which is a method used to solve the
inverse problem: estimating the position of a set of markers from a set of images. However,
as a subproduct of the process, MarkerMapper obtains the pose of the images. Its main
drawback is that each marker must be unique, i.e., one cannot reuse markers. Since this is
impractical in large real-world scenarios, MarkerMapper was only applied to the synthetic
datasets (see Sections 4.1 and 4.2), as well as for the adjacent rooms datasets (see Section 4.3).
Second, in the structure from motion category, we tested Pix4D [25], OpenDroneMap [26],
and COLMAP [27]. Finally, we extended our comparisons to include PolyCam [31], which
is a novel reconstruction method based on 3D Gaussian splatting.

The rest of this section explains in detail each dataset and the results of our method in
each one of them.

4.1. Synthetic Corridor

In this experiment, we modeled a long corridor that covered 90 m2, with cameras
on the ceiling (see Figure 3). The cameras had minimal overlapping in their field of view,
ensuring that each one overlapped with its nearest neighbors only. In total, there were
20 cameras placed at a 2.2 m distance from each other, with a resolution of 1920 × 1080 px,
a focal length of 1173 px, and their FOV was ≈79◦. The scenario was such that 12 markers
of 32 cm were placed below every camera.

Using this scenario, we created two datasets, A and B, by changing the orientations
of the cameras. In Dataset A (Figure 3a), the cameras were placed completely facing
down, while in Dataset B (Figure 3b), they were slightly rotated to have a wider view of
the corridor.

We examined the robustness of our method by conducting ablation experiments to
evaluate the effects of the different optimization terms on the reconstruction quality. These
experiments include the optimization of the Erp term only, along with all possible combina-
tions of errors. The results are presented in Table 1, where column Et shows the translational
error of the cameras, and column Er represents the rotational error. Our method achieved
millimeter-level translation errors and very low angular errors, demonstrating its high
precision. However, it is notable that Dataset B exhibited higher errors when only using
the term Erp. This could be attributed to the oblique arrangement of the cameras relative to
the markers, which posed a more challenging reconstruction task.

Table 1. Results using the synthetic corridor datasets. Lower values for both Et and Er represent
a better reconstruction. The term Erp refers to the baseline, the term Ecp refers to the usage of control
points, Ecc refers to the enforcement of cameras being at the same plane, and Ecm applies the same
principle to the markers.

Synthetic Corridor

Dataset A Dataset B

Method Et (cm) Er (◦) Et (cm) Er (◦)

Erp 0.52 0.089 5.65 0.051
Erp + Ecc 0.63 0.030 0.46 0.022
Erp + Ecm 3.12 0.118 6.08 0.095
Erp + Ecc + Ecm 0.61 0.118 0.46 0.029
Erp + Ecp 1.67 0.116 2.65 0.165
Erp + Ecp + Ecc 0.64 0.056 0.39 0.090
Erp + Ecp + Ecm 1.69 0.056 2.63 0.166

Erp + Ecp + Ecc + Ecm 0.66 0.052 0.41 0.063



Sensors 2024, 24, 4303 13 of 21

Additionally, for Dataset A, including extra optimization terms did not significantly
improve the reprojection error alone, resulting in reconstructions that were nearly of the
same quality as the original. In contrast, for Dataset B, this inclusion resulted in a notable
improvement in the translational errors. It is important to highlight that for both datasets,
the rotational errors remained stable across all experimental configurations.

4.2. Synthetic Duplex

In this experiment, we designed a more challenging environment with multiple rooms
and corridors, cycles, variability in camera arrangement, and two different floors (see
Figure 4). The environment consisted of eight rooms and ten corridors that covered an area
of 1077 m2 and was structured on two floors connected by ramps. Using the same structure,
we created two datasets using different cameras and marker arrangements.

The first one, Dataset A, consisted of 192 makers of 80 cm and 90 cameras with
a resolution of 1920 × 1080 px, a focal length of 1600 px, a FOV of ≈62◦, and were placed
facing down. The main change in Dataset B was that the rooms’ cameras were placed on
the walls and pointed to the center. To properly cover the entire area with some overlap,
we needed 94 cameras with a focal length of 480 px and a FOV of ≈127◦.

To better understand the evolution of the errors as the complexity increased, each
dataset was divided into three complexity levels: a single room, a single floor, and the
whole scenario (the two connected floors). For Dataset A, these divisions are illustrated
in Figures 4c, 4d, and 4a, respectively, facilitating a focused evaluation of the method’s
performance across varying levels of structural complexity.

To test the performance of our method across these datasets, we performed a set of
ablation experiments to test the effects of different optimization terms, as was done for the
synthetic corridor datasets. The results are illustrated in Table 2.

For the first room, our method yielded submillimeter errors and very low angular
errors. However, as the complexity of the dataset increased, the errors increased up to
centimeter levels, demonstrating that the inherent complexity of the data directly impacted
the accuracy of the computed solutions. Furthermore, it was observed that the solutions
for Dataset B were less precise with respect to the translational errors. Nonetheless, our
rotational errors remained below one degree in all cases. Specifically, for translational
errors, we began at millimeter-level precision for the first room and increased to as much
as several centimeters for the complete Dataset B.

Table 2. Results using the synthetic duplex datasets. Lower values for both Et and Er represent
a better reconstruction. Each synthetic duplex dataset was divided into three complexity levels: a
single room, the entire first floor, and the complete duplex. The term Erp refers to the baseline, the
term Ecp refers to the usage of control points, Ecc refers to the enforcement of cameras being on the
same plane, and Ecm applies the same principle to the markers.

1st Room 1st Floor 2 Floors (Complete)

Dataset A Dataset B Dataset A Dataset B Dataset A Dataset B

Method Et (cm) Er (◦) Et (cm) Er (◦) Et (cm) Er (◦) Et (cm) Er (◦) Et (cm) Er (◦) Et (cm) Er (◦)

Erp 0.14 0.022 0.50 0.013 1.08 0.159 6.61 0.367 6.56 0.235 9.77 0.379
Erp + Ecc 0.15 0.025 0.30 0.015 0.71 0.164 5.85 0.325 6.94 0.227 18.01 0.393
Erp + Ecm 0.14 0.016 0.24 0.040 1.07 0.160 8.98 0.395 3.73 0.113 14.99 0.575
Erp + Ecc + Ecm 0.15 0.023 0.24 0.039 0.71 0.165 5.80 0.227 3.71 0.113 11.44 0.493
Erp + Ecp 0.13 0.024 0.22 0.020 0.79 0.152 7.09 0.506 4.81 0.334 12.58 0.390
Erp + Ecp + Ecc 0.21 0.021 0.20 0.014 0.46 0.163 2.65 0.268 3.31 0.272 11.62 0.369
Erp + Ecp + Ecm 0.13 0.020 0.21 0.053 0.76 0.159 6.62 0.444 2.73 0.044 10.71 0.535

Erp + Ecp + Ecc + Ecm 0.19 0.021 0.18 0.053 0.49 0.157 2.69 0.241 2.04 0.050 7.29 0.493

Regarding the use of different optimization term configurations, we concluded that our
method, when using all configured optimization terms jointly, achieved better reconstruc-
tion in every case compared with using only the reprojection errors, particularly in terms
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of the translational errors. The exceptions were for Dataset A, where we obtained similar
reconstruction quality as when using only the reprojection errors, and for rotational errors,
where we consistently achieved similarly low errors across all the tested configurations.

4.3. Adjacent Rooms

This was the first experiment with real data. In it, we aimed to find the position of the
cameras placed in a real scenario comprised of two adjacent rooms (≈72 m2), as shown
in Figure 5. For the experiment, we tested two different camera configurations (Dataset
A and B), which are shown in the figure in blue and orange. For Dataset A (blue color),
eight cameras were placed on the ceiling facing down, looking at a set of 25 markers of
21.7 cm placed on the floor. The cameras had a resolution of 1920 × 1080 pix, a focal length
of ≈1108 pix, and a FOV of ≈84◦. For Dataset B (orange color), a total of 16 cameras of the
same type as in Dataset A were placed on the walls, looking at 16 markers with a marker
size of 40 cm. Figure 5 also shows some of the images of the datasets.

While ground truth camera positions were manually obtained, it was impossible to
know their orientation accurately. Consequently, we only evaluated the translational error
in this experiment. As in previous cases, we conducted a series of ablation experiments
and the results are shown in Table 3.

Table 3. Results in the adjacent rooms datasets. Lower values for both Et and Er represent a better
reconstruction. The term Erp refers to the baseline, the term Ecp refers to the usage of control points,
Ecc refers to the enforcement of cameras being at the same plane, and Ecm applies the same principle
to the markers.

Adjacent Rooms

Dataset A Dataset B

Method Et (cm) Et (cm)

Erp 7.32 8.07
Erp + Ecc 6.63 4.99
Erp + Ecm 6.67 8.41
Erp + Ecc + Ecm 6.58 5.10
Erp + Ecp 6.61 8.01
Erp + Ecp + Ecc 6.60 5.60
Erp + Ecp + Ecm 6.63 7.98

Erp + Ecp + Ecc + Ecm 6.63 5.62

Our method achieved an accuracy within the range of 5 to 8 centimeters in all tested
cases. Using the optimization term Ecc consistently reduced the error in both datasets, while
the optimization term Ecm rarely improved the result. The use of control points slightly
improved the accuracy. Figure 5 shows the control points employed. As a conclusion of
this test, we can indicate that the joint optimization of all terms resulted in improvements
for both datasets over the use of reprojection errors alone.

4.4. Corridor

In this experiment, we tested our method in a real 50 m2 corridor (see Figure 6a).
The setup involved a set of 15 cameras (of the same model as in the previous experiment)
arranged linearly along the ceiling so they had minimal overlap with their immediate
neighbor. Then, every camera group was formed of every pair of cameras with overlap-
ping views. This configuration tested the precision of our method in maintaining spatial
continuity across minimal overlapping fields of view. The ground truth was established
again through manual annotation.
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Figure 6. Corridor and complete floor datasets. Representations of camera positions and orientations
are depicted using blue and orange pyramids. (a) Corridor datasets. (b) Complete floor datasets.

We used only nine different markers (21.7 cm) to record the datasets using the follow-
ing approach visually explained in Figure 7a. The markers were placed to be visible to
two adjacent cameras (C2 and C3), and we captured an image with both of them. Then,
we moved some of the markers (the closest to C2) to be visible to the next camera (C4).
The process was repeated until the whole dataset was recorded using a minimal number
of markers. If unique markers had been used (as required by MarkerMapper), a total of
45 markers would have been necessary for this dataset. For this reason, MarkerMapper
was not tested in this experiment.

Again, we created two datasets, A and B. In Dataset B, the cameras were tilted at an
oblique angle to the floor, enhancing the coverage, whereas in Dataset A, the cameras faced
directly downward. Refer to Figure 6a for a visual representation of these configurations.

The results obtained are shown in Table 4. As in the previous case, we performed an
ablation study that analyzed the impacts of the different optimization terms on the results.
As can be observed, the errors obtained in Dataset A were high. The reason for this was the
minimal overlap between the cameras, whose relationship could only be obtained by three
markers that were very close to each other. On the other hand, because of the angles of the
cameras in Dataset B, every pair of cameras saw at least six common markers.

Table 4. Results using the corridor datasets. Lower values for both Et and Er represent a better
reconstruction. The term Erp refers to the baseline, the term Ecp refers to the usage of control points,
Ecc refers to the enforcement of cameras being on the same plane, and Ecm applies the same principle
to the markers.

Corridor

Dataset A Dataset B

Method Et (cm) Et (cm)

Erp 26.19 6.95
Erp + Ecc 1.22 1.07
Erp + Ecm 16.65 7.31
Erp + Ecc + Ecm 1.60 1.01
Erp + Ecp 10.62 4.55
Erp + Ecp + Ecc 1.84 0.93
Erp + Ecp + Ecm 3.95 4.14

Erp + Ecp + Ecc + Ecm 1.78 0.84

Additionally, the optimization approach for Dataset A was conducted pair-wise,
meaning each camera only shared markers with one adjacent neighbor. In contrast, Dataset
B employed a triadic connection strategy due to the camera angles, allowing each camera
to share markers with two neighboring cameras.
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Figure 7. Reconstruction processes of corridor Dataset A, illustrating the impact of the control points
and plane assumptions on the accuracy. Cameras are depicted as red pyramids. (a) Images of the
dataset showing how markers were reused to create it. See the text for further details. (b) Baseline
reconstruction without optimization, showing the initial deformations. (c) Enhanced reconstruction
using the optimization terms Ecp, Ecc, and Ecm, which incorporate the control points and the assump-
tion that cameras and markers were coplanar, significantly reducing the doming effect deformation
and improving alignment.
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From the three-dimensional reconstruction of Dataset A using the baseline (see
Figure 7b), one can observe a deformation in the camera’s estimated position, which de-
scribes a parabola. This is the well-known doming effect [33].

The deformation accumulated along the system, leading to a visible curvilinear dis-
tortion in the model. The configuration was adjusted by assuming that the cameras and
markers were coplanar to address these potential deformations in such environments.
Additionally, control points were strategically placed at both the beginning and end of
the corridor, as shown in Figure 6. These control points provide a method with verifiable
real-world data points essential for refining the reconstruction process.

With these adjustments, the revised method achieved satisfactory reconstruction re-
sults comparable with those in other tested environments. This highlights the importance of
incorporating environmental specifics and control measures in complex setups to enhance
the reconstruction algorithm’s accuracy and reliability.

For Dataset B, where this deformation was not observed, applying different optimiza-
tion flags allowed for further solution improvement. This demonstrated that our method,
particularly with the added adjustments for planarity and control points, was robust across
different challenging scenarios, thereby validating its effectiveness in spatial reconstruction
under constrained conditions.

4.5. Complete Floor

This experiment introduced a more complex environment that consisted of four long
corridors that converged at a central room, covering approximately 214 m2 (see Figure 6b).
A total of 51 cameras of the same type as in the previous experiment were placed on the
ceiling, and their position was manually annotated. As in previous cases, two datasets
were created. In Dataset A, cameras pointed straight down to the ground, while in Dataset
B, they had an inclination of 45◦. As in the previous experiment, we used only nine 21.7 cm
markers that were moved to connect the cameras. To use MarkerMapper, a minimum of
169 unique markers would have been required.

The results of the ablation study of our method are shown in Table 5. The baseline
results show a pattern similar to that observed in the corridor experiment, with a noticeable
doming effect that affected the reconstruction accuracy. This deformation was primarily
due to the initial camera arrangement and the complex geometry of the environment. As
demonstrated in previous sections, applying optimizations, such as using control points
(shown in Figure 6) and the assumption of coplanarity in cameras and markers, significantly
enhanced the reconstruction quality.

Table 5. Results using the complete floor datasets. Lower values for both Et and Er represent a
better reconstruction. The term Ecp refers to the usage of control points, Ecc refers to the enforcement
of cameras being on the same plane, and Ecm applies the same principle to the markers.

Complete Floor

Dataset A Dataset B

Method Et (cm) Et (cm)

Erp 133.97 247.80
Erp + Ecc 79.22 167.11
Erp + Ecm 123.72 238.88
Erp + Ecc + Ecm 78.05 167.67
Erp + Ecp 36.13 42.00
Erp + Ecp + Ecc 14.76 16.40
Erp + Ecp + Ecm 36.75 22.80

Erp + Ecp + Ecc + Ecm 14.82 15.72

With these strategic adjustments, our method successfully reduced the translational
error to approximately 15 cm in this challenging environment marked by its intricate layout
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and large area. This improvement is particularly significant, considering the initial high
errors of 134.45 cm and 248.35 cm in Datasets A and B, as outlined in Table 5. The refined
results validated the robustness of our method, demonstrating its capability to adapt and
perform effectively across diverse and complex scenarios.

4.6. Comparison with Other Works

Up to this point, we have evaluated our method under different challenging scenarios.
Now, we compare it with some state-of-the-art methods. In particular, we compared it with
the structure from motion (SFM) implementations OpenDroneMap [26], Pix4D [25], and
COLMAP [27]. We also compared it with the Gaussian splatting approach PolyCam [31],
and with the fiducial-marker-based approach MarkerMapper [17].

Despite numerous attempts, we were unable to make the methods OpenDroneMap,
Pix4D, COLMAP, and PolyCam produce valid reconstructions. Although some methods
produced partial reconstructions, they could not obtain a full reconstruction for any dataset.
We believe the reason was the insufficient overlap between the cameras and the lack of
distinctive keypoints to establish reliable matches. The only method that was able to work
in the dataset was MarkerMapper.

Table 6 presents the results obtained, where the symbol ‘−’ indicates that a particular
error was unavailable because we did not have the ground truth, and the symbol ‘×’
indicates that the method could not be applied. This was the case with MarkerMapper,
which could not be applied in the corridor and complete floor datasets since we reused
markers. The last column represents the results obtained by our method, which are
presented in previous sections.

Table 6. Comparison with other works. Lower values for both Et and Er represent a better recon-
struction. MarkerMapper was the only method capable of obtaining coherent results. The symbol ‘−’
indicates that a particular error was unavailable because we did not have the ground truth, and the
symbol ‘×’ indicates that the method could not be applied.

Methods MarkerMapper [17] Our Method

Datasets Et (cm) Er (◦) Et (cm) Er (◦)

Syn. corridor A 0.36 0.004 0.66 0.052
B 36.37 0.018 0.41 0.063

Syn. duplex 1st room A 0.13 0.003 0.19 0.021
B 0.54 0.004 0.18 0.053

Syn. duplex 1st floor A 1.19 0.003 0.49 0.157
B 4.09 0.022 2.69 0.241

Syn. duplex 2 floors A 18.19 0.090 2.04 0.050
B 14.94 0.670 7.35 0.552

Adjacent rooms A 6.77 − 6.63 −
B 34.55 − 5.62 −

Corridor A × − 1.22 −
B × − 0.84 −

Complete floor A × − 14.82 −
B × − 15.72 −

For the synthetic corridor, the reconstruction MarkerMapper obtained using Dataset
A was similar to ours. Still, it was worse than our solution using Dataset B. MarkerMapper
generally obtained slightly lower rotational errors than our method. While our method
consistently obtained solutions comparable or superior to those generated by MarkerMap-
per, this advantage became particularly significant as the complexity increased, notably in
terms of the translation error. In the first room, our method yielded consistent solutions
for both camera arrangements. In contrast, for the first-floor and two-floor datasets, our
method achieved better results than MarkerMapper, except for slightly worse rotational
errors on the last ones.

In the real dataset for adjacent rooms, our method outperformed MarkerMapper. In the
corridor and complete floor datasets, our method was the only one capable of computing
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the camera poses accurately. However, it is important to note that as the complexity of the
task increased, the error margin in our method also grew.

Our experiments show that computing the poses of cameras with little overlap re-
mained challenging, and few methods excelled under difficult conditions. Our analysis
shows that our method could generate good results, while most alternatives often failed,
particularly in environments with poor camera overlap or large distances. It proved
particularly effective in complex scenarios, delivering superior accuracy and robustness.

5. Conclusions

This paper proposes a novel method for estimating the pose of a large set of fixed
cameras in indoor environments. Our method enhanced the robustness of marker-based
systems while preserving their inherent advantages, such as the capability to use a small
subset of printed markers across various settings and the addition of real-world information
to our solution. Our results demonstrate that our approach not only met but often exceeded
the performance of existing state-of-the-art methods, particularly in challenging scenarios
characterized by limited camera overlap and sparse environmental features. Moreover,
our method effectively resolved the doming effect by incorporating real-world information,
thereby improving accuracy and robustness in camera pose estimation.

Continued development of our camera pose estimation approach will focus on several
key enhancements. We aim to expand the use of various types of markers, including
the fiducial objects [19], to increase the flexibility of our system. This expansion will
allow for improved adaptability across diverse camera arrangements and environments,
enabling the possibility of having no overlap between cameras. In addition, we plan to
incorporate advanced machine learning algorithms to tailor the bundle adjustment process
for each specific case effectively. These advancements are anticipated to refine the accuracy
and efficiency; reduce human intervention; and accelerate decision-making in real-time
applications, such as augmented reality and autonomous indoor positioning.
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