CONCENTRACION DE LOS COMPONENTES NO GRASOS DEL QUESO Y GRADO DE HIDROLISIS DE LA α_s Y β -CASEINA

(NON FATTY COMPONENTS CONCENTRATION IN CHEESE AND α_s AND β -casein HYDROLISIS).

por

A. MARCOS, M. A. ESTEBAN y J. FERNANDEZ-SALGUERO*

Introducción.

La β-caseína es más resistente a la proteólisis que la α_s -caseína en las variedades de queso duras y semiduras de pH bajo, resistencia que se ha relacionado con el contenido en agua y actividad del agua (a_w) del queso, la concentración de proteínas, cenizas, ClNa, calcio, fósforo y pH (Ledford et al., 1966, Creamer, 1970; Harper et al., 1971; Phelan et al. 1973; Fox y Walley, 1975).

Analizando estadísticamente la correlación existente entre cada uno de los citados factores químicos y físicos, con las cantidades relativas de α_s y β-caseína presentes en los quesos maduros de los Pedroches, encontramos (Marcos et al., 1976) que todos los factores antedichos estaban significativamente relacionados con la α_s-caseína, en lugar de estarlo con la β-caseína, cuyos coeficientes de correlación no fueron significativos.

Recientemente hemos confirmado los resultados anteriores en otra actividad similar de queso (Marcos et al., 1978), cuantificando las bandas de α_s y β-caseína de los ferogramas en gel de acrilamida, mediante barrido densitométrico de los geles teñidos y expresándolas en porcentaje de la superficie densitométrica total, al igual que en el trabajo anterior.

Siendo los resultados obtenidos aparentemente anómalos o paradójicos a la luz de las investigaciones realizadas, tanto con soluciones de caseinato como con otras variedades de queso, sobre la hidrolisis relativa de las caseínas (Creamer, 1970, 1971, Fox y Walley, 1971 Phelan, 1973), que resultan contradictorias, hemos procedido a evaluar las bandas de α_s y β-caseína de los mismos geles electroforéticos del

* Departamento de Tecnología y Bioquímica de los Alimentos, Facultad de veterinaria, Universidad de Córdoba (España).

Recibido para publicación el 27-1-78.

— 1 —
Archivos de zootecnia, vol. 27, núm. 107, 1978, p. 286
MARCOS et al.: HIDROLISIS DE LAS CASEINAS DEL QUESO.

Estudio anterior (Marcos et al., 1978) por medida espectrofotométrica (El-Shibini y Abd El-Salam, 1976) y a calcular sus correlaciones con la concentración de los componentes del queso de la Serena (Marsilla, 1978). Seguidamente se ofrecen los resultados comparativos concordantes de las correlaciones halladas con las medidas espectrofotométricas y densitométricas.

Material y métodos.

Muestras de queso. Se tomaron de 14 quesos maduros del Valle de la Serena (Badajoz), de distinta procedencia, y se prepararon siguiendo la norma 34 105 hl de la U.N.E. (1969). El queso de la Serena es de tipo duro y pH bajo; se elabora con leche de oveja coagulada con cuajo vegetal obtenido de un cardo (Cynara sp.), adicionando cloruro sódico. Madura en condiciones ambientales en unos 45 días.

Electroforesis en gel de acrilamida. Se siguió la modificación de Akroyd (Smith, 1968) de la técnica de Ornstein y Davis (1964), procediendo como hemos descrito en trabajos precedentes (Marcos et al., 1976).

Después de haber estimado densitométricamente (con Chromoscan 200) las cantidades relativas de α_s y β-caseína (Marcos et al., 1978), las zonas electrofóreticas de ambas proteínas se cortaron por separado y el colorante fue extraído cuantitativamente, densintegrandol el gel en un tubo, añadiendo 3 ml de solución de carbonato sódico al 2 p. 100 y calentando 2 minutos en baño de agua en ebullición; después de centrificar los tubos, la absorbencia del sobrenadante se midió a 650 nm (El-Shibini y Abd El-Salam, 1976) con un Spectronic 70.

Análisis estadístico. Se hallaron los coeficientes de correlación del (X) pH, a_w, contenido en agua (expresado por g de materia seca magra), nitrógeno, minerales totales, cloruro sódico, calcio y fósforo (expresados por g de agua) de las 14 muestras de queso con (Y) las DD. OO.660 del colorante de las bandas de α_s y β-caseína.

Resultados y discusión.

En el cuadro 1 figuran los coeficientes de correlación encontrados entre cada uno de los factores (X) composicionales y físicos que influyen en la velocidad de hidrólisis relativa de las caseínas y a los que se atribuye la refractariedad de la -ca-
Señala a la proteólisis y cada una de las cantidades (Y) de α_1 y β-caseína no degradadas de los quesos, evaluadas por la DO$_{650}$ del colorante extraído cuantitativamente de las bandas correspondientes separadas en los geles electroforéticos. Entre paréntesis se incluyen las correlaciones obtenidas anteriormente cuantificando las bandas electroforéticas por barrido densitométrico y expresando las cantidades relativas de α_1 y β-caseína en porcentaje de la superficie densitométrica total (Marcos et al. 1978).

Es evidente que existe una gran concordancia en las correlaciones halladas determinando las cantidades relativas de caseínas por ambos métodos y que, en general, mejora el grado de significación de las correlaciones con el método fotométrico desarrollado por El-Shibini y Abd El Salam (1976).

Separando por electroforesis de disco en gel de acrilamida cantidades conocidas de α_1 y β-caseína purificadas y representando las densidades ópticas de las fracciones deluidas frente a su concentración. El Shibini y Abd El-Salam (1976) han encontrado que entre las DD. OO$_{650}$ y la concentración de cada unna de las proteínas existen relaciones lineales, hasta una absorbancia de 0,25.

Puesto que existe proporcionalidad directa entre la lectura fotométrica y la cantidad absoluta de proteína, quedan confirmadas nuestras observaciones anteriores (Marcos et al., 1976. 1978) de que los factores que influyen en la velocidad relativa de la hidrolisis de las caseínas del queso no afectan, en los quesos estudiados, a la proteólisis de la β-caseína y sí a la de la α_1-caseína, al contrario de cuantas observaciones se han efectuado hasta ahora, tanto en sistemas modelo con soluciones de caseínato como en otras variedades de queso.

La hidrolisis enzimática de la α_1-caseína del queso, y no la de la β caseína es dependiente de la concentración, en fase polar del queso, de los componentes sólidos no grasos. La concentración de la materia inorgánica (minerales totales) es el factor que más influye en la hidrolisis, siendo muy significativa la influencia de la concentración de proteína, sal, calcio y fósforo.

Por simplicidad y conveniencia hemos adoptado el método de El-Shibini y Abd El Salam (1976) en las investigaciones que estamos realizando sobre otras variedades de quesos.

Resumen.

En el queso de la Serena, la hidrolisis enzimática de la α_1-caseína, y no de la β-caseína de pende de la concentración, siendo tanto menor la hidrolisis cuanto mayor es la concentración de los componentes no grasos en la fase polar del queso. El componente que más influye en la hidrolisis es la materia inorgánica, siendo muy significativa la influencia de las concentraciones de proteína, sal, calcio y fósforo.
Summary.

The enzymic hydrolysis in Serena cheese of the α_T-casein, and not that of β-casein, is concentration-dependent, being lesser as the non fatty components concentration increase in the cheese polar phase. The main factor influencing the hydrolysis is the inorganic matter, being very significant the influence of protein, ClNa, and P concentrations.

Bibliografía.

UNE, 1069.—Métodos de ensayo de queso: obtención de muestras, 34 105 hl.
CUADRO I. Coeficientes de correlación \(r \) de diversos factores \(X \) químicos y fíisicos de 14 quesos de la Serena con las DD. \(O_{0.650} \) \(Y \) de las bandas electroforéticas teñidas de la \(\alpha_{\pi} \) y \(\beta \)-caseína. (a)

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(\alpha_{\pi}) -caseína</th>
<th>(\beta) -caseína</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_{2}O (g^{-1} ESM) \omega)</td>
<td></td>
<td>-0,6116 *</td>
<td>0,1774</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0,6637 **)</td>
<td>(0,0295)</td>
</tr>
<tr>
<td>(a_w)</td>
<td></td>
<td>-0,7857 ***</td>
<td>-0,0883</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0,7279 **)</td>
<td>(-0,0837)</td>
</tr>
<tr>
<td>(N (g^{-1} H_{2}O))</td>
<td></td>
<td>0,7479 **</td>
<td>-0,1160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,7799 **)</td>
<td>(0,0227)</td>
</tr>
<tr>
<td>Minerales ((g^{-1} H_{2}O))</td>
<td></td>
<td>0,8184 ***</td>
<td>0,0350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,8116 *)</td>
<td>(-0,1055)</td>
</tr>
<tr>
<td>(ClNa (g^{-1} H_{2}O))</td>
<td></td>
<td>0,7688 **</td>
<td>0,0741</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,6429 *)</td>
<td>(0,0650)</td>
</tr>
<tr>
<td>(Ca (g^{-1} H_{2}O))</td>
<td></td>
<td>0,7136 **</td>
<td>0,0754</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,6968 **)</td>
<td>(-0,1077)</td>
</tr>
<tr>
<td>(P (g^{-1} H_{2}O))</td>
<td></td>
<td>0,6916 **</td>
<td>-0,0570</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,6483 *)</td>
<td>(-0,1869)</td>
</tr>
<tr>
<td>(pH)</td>
<td></td>
<td>0,1170</td>
<td>-0,0575</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,1887)</td>
<td>(0,0550)</td>
</tr>
</tbody>
</table>

(a) Entre paréntesis figuran los valores \(r \) hallados previamente expresando la \(\alpha_{\pi} \) y \(\beta \)-caseína en porcentaje de la superficie densitométrica total de los geles teñidos (Marcos et al., 1978).

(b) ESM = extracto seco magro (materia seca libre de grasa).