CULTIVO DE NEURONAS DE GANGLIOS CILIARES DE EMBRION DE POLLO, SOBRE POLIORNITINA, POLILISINA, COLAGENO Y GELATINA.

(CULTURE OF NEURONS FROM CILIARY GANGLIA OF CHICK EMBRYO ON P-ORNITHINE, P-LYSINE, COLAGEN, AND GELATIN).

por

DIEGO JORDANO-BAREA*

En 1966 el autor propuso concebir la célula como un microcomputador. Para colocar nuestra hipótesis sobre una base experimental dirigimos nuestra atención hacia las neuronas. El primer paso era mantener en nuestro laboratorio cultivos neuronales experimentales. Las dificultades para conseguirlas nos llevaron al Departamento de biología del profesor Silvio Varon, en la Universidad de San Diego (La Jolla), School of Medicine. A nuestra llegada, en febrero de 1977, cultivaba células nerviosas de ganglios espinales y simpáticos. Mi trabajo consistió en montar en aquel laboratorio la técnica de cultivo de células nerviosas de ganglios ciliares, siguiendo los pasos de Helfand, Smith y Wessells (1976) y realizar algunos experimentos diferenciales en cuanto a medios, algunos substratos y ciertas densidades de siembra.

Material y métodos.

Nueva técnica para microdissección de los ganglios ciliares.

Se decapita un embrión de pollo de 8 días y se encaja su cabeza sobre una placa de Petri cubierta de sylgar, en una depresión marcada en el momento de su solidificación. Se orienta la cabeza con el bulbo hacia la izquierda y el pico hacia la derecha del operador.

Una pinza (microforceps n.º 5B, 45º MS, 2061 Stainless, Dumont Manufacturing, 2901 Montignez J. B. Suiza) sostenida por la mano izquierda y clavada en el bulbo mantiene fija la cabeza, sin necesidad de alfileres, mientras con una pinza idén tica, en la mano derecha, cogida oblicuamente con sus puntas hacia arriba y di-

* Departamento de biología. Facultad de veterinaria. Universidad de Córdoba (España).
Trabajo realizado con una beca de cooperación cultural entre España y EE. UU. de América, en el Departamento of Biology, School of Medicine, UCSD, La Jolla (California), del 1 de febrero al 10 de agosto de 1977.
Recibido para publicación el 6-4-78.
rigidos hacia el bulbo (situándola sobre el eje longitudinal de la cabeza) se rebanan los hemisferios cerebrales, entre ambos ojos, tan extensa y profundamente como se pueda, procurando que de una sola vez quede al descubierto el tallo hipofisario, sin llegar al quiasma óptico, que queda más a la izquierda. Con un poco de práctica se conseguirá arrancar el volumen adecuado de masa cerebral, lo que economizará movimientos y tiempo.

Con la pinza derecha arrancamos los lóbulos olfatorios y todos los tejidos interoculares, hasta el quiasma óptico. Con la misma pinza se desgarrarán los tejidos que haya sobre el polo anterior de cada ojo. Cuanto más limpio e intocado queda el globo ocular mejor será el resultado. A continuación hundimos perpendicularmente la pinza derecha en la masa de tejidos pos-ópticos, con las puntas en contacto con el ojo izquierdo, procurando no herirlo. Por desgarros sucesivos limpiaremos bien todo el polo caudal del globo ocular, procurando dejar al descubierto la esclerótica. Del mismo modo limpiaremos el ojo derecho. Manteniendo casi horizontalmente la pinza que sostiene la mano derecha seccionaremos el músculo recto superior del ojo en ambos lados. Los órganos de la visión no están unidos ya más que por el quiasma y por los tejidos que hayan resistido la limpieza mediante desgarros. A partir de aquí nuestra técnica no difiere sustancialmente de la de Helfand y col. (1976). Con ella se consiguen bien 40 ganglios por hora tras un período de entrenamiento mucho más corto que con la de Helfand y col.

Bajo el mismo microscopio binocular que sirvió para la disección se cortan los nervios oftálmico y coroideo, que suelen acompañar a casi todos los ganglios ciliares. Usamos un mango provisto de una hoja estéril de corte convexo. Recomendamos la Rib Back n.º 10 de Bard-Parker, Rutherford, New Jersey 07070. Basta la mano derecha, pues no hay necesidad de sujetar el ganglio con una pinza en la izquierda. Los nervios se cortan de raíz, aplicando el filo contra el fondo de la placa de Petri.

Tripsinización de los ganglios ciliares.

Nuestra técnica actual es una modificación de la que describen Helfand y col. (1976). Se aspiran los ganglios uno a uno, contándolos, mediante una pipeta Pasteur estéril conectada a un aspirador Fortuna-Secura n.º 1, art. 641, del Dr. Ernst (Alemania). Cuando tengamos diez los trasladaremos a un tubo estéril de 70 x 12 mm, que contiene solución estéril de Hanks, de pH 7,38, tibia (mantenida en estufa a 37º C) 10 minutos. Centrifugación de 30" a 750 rpm. Se extrae el líquido de Hanks mediante una pipeta Pasteur. Para no perder ninguno, en esta operación y en todas las siguientes los cambios de líquido se deben hacer bajo lupa binocular. Se añaden 6 ml de bactotripsina Difco al 0,25 por 100, en solución tibia de Hanks libre de
calcio y magnesio y se llevan a un baño María oscilante regulado a 37° C. En él permanecen durante 20 minutos. Centrifugación de 30” a 750 rpm. Se extrae el sobrenadante mediante succión cuidadosa, vigilada a través de lupa binocular. Lava
do con 6 ml de medio de cultivo F12 modificado (tibio) agitando con un vibrador durante 10”, siempre con la misma intensidad.

Se repite el lavado. Se agrega al tubo 6 ml de inhibidor de tripsina tibio: 100 mg de inhibidor + 40 ml de medio basal de Eagle (L-EBM). Agitación durante 10” en el vibrador, con la misma intensidad siempre.

Se repite el lavado con 6 ml de medio F12 tibio, agitando como antes se dijo. Repetición de los lavados en F12 dos veces más (habremos lavado los ganglios tres veces). Disociación en el mismo tubo con una pipeta Pasteur de 150 mm (punta de unos 58 mm) provista de filtro de algodón, a la que se acopló previamente un microcapilar Voluptette de 20 microlitros, valiéndose de un trozo de tubo de teflón de 2 mm de diámetro por 5 mm de largo. Una vez que un extremo del microcapí
tar contacte perfectamente con la punta de la pipeta Pasteur se refuerza la unión con un pegamento y se esteriliza en autoclave antes de usarla.

Una pera de caucho del tamaño de una nuez, acoplada a la boquilla, da una buena disociación con una aspiración que extraiga casi todo el líquido (no permitir la entrada de aire) y una expulsión intensa incompleta, que se detenga cuando la suspensión alcance la soldadura de plástico, repitiendo 25 a 35 veces. Con la prá
tica se llegará a un número fijo de succiones. La punta de la micropipeta quedará a unos 5 mm del centro del fondo del tubo. Pipeta y tubo se mantendrán perpendicularmente a la altura de los ojos. La formación de burbujas daña las células. Es imprescindible disociar siempre del mismo modo y en iguales condiciones. Cual
quiera variación puede modificar las propiedades de la población celular obtenida.

Siembra.

En placas de Petri de plástico (para cultivo de tejidos), de 35 mm de diámetro (PCT 35), revestidas de poliornitina, polilisina, colágeno o gelatina. Ordinariamente sembramos 5 x 10^4 células ganglionares. En experimentos en los que se investigan los efectos de la variación de la densidad, entre 2,5 x 10^4 y 2 x 10^5 células. Contamos las células adheridas al substrato 8 horas después de sembradas. En caso de fuerza mayor, a las 6 horas. Se cuentan las neuronas y las células no neuronales a las 24 horas y diariamente hasta los 6 ó 7 días. Conviene contar aparte, como células redondas (N^-) aquellas que aparecen hemisféricas, brillantes y doradas, sin pro
longaciones, porque pueden ser células no neuronales (fibroblastos o glía) en di
visión o neuronas sin prolongaciones. Abundan cada vez más en los cultivos a medida que son más antiguos.
Preparación del medio cardiocondicionado (MCC).

De los embriones decapitados para obtener los ganglios ciliares extraemos asépticamente el corazón con su seno venoso. Con dos pinzas se dislocan ligeramente los ventrículos y las aurículas, para evacuar la sangre y para facilitar luego la penetración y la acción de la tripsina. Se recogen 20 corazones en 6 ml de solución de DeHaan tibia y se llevan a la estufa a 37° C, 10 minutos. Se sustituye la solución por 6 ml de tripsina al 0,25 por 100 en líquido de Hanks (tibio), libre de calcio y magnesio. Digestión en baño de María oscilante a 37° C, 20 minutos. Extracción del líquido. Lavado rápido en inhibidor de tripsina tibio (100 mg en 40 ml de s. s. de Hanks). Vibrador, 10°. Tres lavados en 6 ml de medio F12, con vibración de 10°. Disociación en 6 ml de F12S10 con una pipeta de 5 ml provista de una pera de caucho del tamaño de una nuez. Recuento del número de células.

Seguimos la técnica recomendada por Helfand y col., con la variante de que utilizamos el líquido de cultivo (F12 modificado, enriquecido con 10 por 100 de suero vacuno fetal) a las 48 horas de haber sembrado en él 3,2 x 10⁷ células cardíacas y, además, una segunda cosecha que obtenemos rellenando el frasco Corning especial para cultivo de tejidos (FCT), de 1000 ml y 250 cm², con otros 50 ml de medio F12 modificado, enriquecido con 10 por 100 de suero vacuno fetal (F12S10). A las 24 horas extraemos el F12S10, lo centrifugamos dos veces seguidas a 3.000 rpm, 10 minutos, comprobamos la ausencia de células mediante examen microscópico y las conservamos en nevera durante 15 días como máximo. Un buen crecimiento debe ser confluyente en 48 horas.

Preparación del medio F12 modificado.

Se parte del medio F12 (GIBCO, Cat. N.º 176, 1976-77) y se le añade la misma cantidad que ya lleva de cada aminoácido, de pirurato sódico y de SO₄ Zn, 7 H₂O, para que resulten a doble concentración. Luego se agregan 50.000 U de penicilina G, más 50.000 microgramos de estreptomicina, más 2.500 microgramos de anfotericina B por litro de medio. Se ajusta el pH a 7,78, con bicarbonato sódico al 7,3 por 100, y se esteriliza a través de ultrafiltro Nalge (cat. N.º 1205, con poros de 20 nm) y se conserva en frigorífico a 3° C, no más de tres meses.

Preparación de las placas de poliornitina.

En un desecador se deseca la superficie del vial que contiene 0,1 g de bromhidrato de poli-L-ornitina (p-orn), para evitar que la estropeen los restos imperceptibles de agua. Se disuelve en 100 ml de tampón borato:

\[\text{B}_0\text{H}_3 \quad 30,915 \text{ g/L; CIK} \quad 37,28 \text{ g/L (pH 7,8)} \]

Ponemos 2 ml de p-orn en cada PCT₃₅ y recubrimos con ella todo el fondo. Se deja 24 horas a la temperatura del laboratorio. Durante la noche se tienen bajo la luz ultravioleta para esterilizarlas.
JORDANO, D.: CULTIVO DE NEURONAS DE GANGLIOS CILIARES DE POLLO.

Se aspira el líquido y se lavan las placas cuatro veces seguidas con agua tridestilada. Se conserva en seco, al abrigo del polvo, no más de una semana.

Preparación de las placas de poli-D-lisina (p-lis).

Hay varios procedimientos. Nosotros hemos seguido el utilizado en el laboratorio de S. Varon, aplicable también a la poli-lisina, al ácido poliglutámico y a otros polímeros. Se disuelve el polímero liofilizado en tampón borato-CIK 0,15 M, pH 8,0. Como solución madre se prepara una de B0₂₃H₃ 0,5 M y CIK 0,5 M. El tampón se obtiene mezclando 300 ml de solución madre y 12 ml de NaOH 1 N, se diluye hasta un litro y se ajusta el pH a 8,0. Se esteriliza pasándola por un ultrafiltro Nalgé de 20 nm y se conserva a 4° C en un frasco estéril. Se incuban placas de Petri Falcon de 35 mm, con 1 ml de solución estéril de polímero, 20 a 24 horas, a la temperatura del laboratorio. Si se desea una concentración menor (0,1, 0,2, 0,4, 1,0, 15 mg/L) se diluye con agua tridestilada estéril. Se aspira el líquido y se lava cada placa con 2 ml de agua tridestilada estéril y se esteriliza a la luz ultravioleta en la cámara, durante 30 minutos. Las placas se conservan a la temperatura del laboratorio sin quitarles el agua. Treinta minutos antes de usarlas se extrae el agua, se sustituye por 2 ml del medio de cultivo (sin suero) y se incuban a 37° C durante 30 minutos. Inmediatamente antes de sembrar se extrae este medio y se reemplaza por el de crecimiento.

Preparación de las placas revestidas de colágeno.

Preferimos el procedimiento que hace uso de colágeno isotónico. En el centro de cada placa de Petri de 35 mm (de plástico para cultivo de tejidos) se ponen 50 lambdas de colágeno y, al lado, 10 lambdas de ClNa al 6 por 100. Se mezclan ambas. Se añade 1 ml de Isotón estéril. Se dejan en la estufa toda la noche. Tres lavados con 2 ml de agua tridestilada. Se esterilizan 30 minutos en luz ultravioleta, sin quitar el agua del último lavado. Antes de usarlas se incuban durante 30 minutos con 2 ml de medio de cultivo.

Preparación de las placas revestidas de gelatina.

Heinz nos propuso ensayar su técnica en nuestros cultivos de células ganglionares ciliares. En el centro de cada placa (PTC₃₅) se ponen 50-lambdas de una solución de gelatina (Difco Bacto 0143-01) al 2 p. 100 en agua tridestilada, enfriada con hielo en copos. Se extienden con una pipeta Pasteur doblada en ángulo recto. Se lava en agua tridestilada y se esteriliza en luz ultravioleta.

Resultados experimentales.

El profesor S. Varon nos propuso comprobar si el medio cardio-condicionado es o no imprescindible para el crecimiento de células ciliares en medio basal de Ea-
ARCHIVOS DE ZOOTECNIA, Vol. 28, Núm. 111, 1979, P. 206
JORDANO, D.: CULTIVO DE NEURONAS DE GANGLIOS CILIARES DE POLLO.

...gle puesto que el ganglio ciliar intacto crece bien en él sobre colágeno. Con este fin realizamos dos experimentos con nulo crecimiento. Ensayamos luego el medio F12S10. Las medias numéricas de tres réplicas se condensan en el cuadro 1.

CUADRO 1. Número de células ganglionares ciliates de embrión de pollo de 8 días, cultivadas sobre p-L-ornitina. F12S10 vs. MCC. 5 x 10⁴ células por PCT₃₅°C₀₂ al 5 p. 100; 37°C.

<table>
<thead>
<tr>
<th>Días</th>
<th>F12S10</th>
<th></th>
<th></th>
<th>MCC</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N⁺</td>
<td>N⁻</td>
<td>TN</td>
<td>NN</td>
<td>N⁺</td>
<td>N⁻</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>900</td>
<td>900</td>
<td>3,400</td>
<td>3,767</td>
<td>4,993</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>300</td>
<td>333</td>
<td>933</td>
<td>1,467</td>
<td>5,367</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1,067</td>
<td>533</td>
<td>4,733</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>1,067</td>
<td>200</td>
<td>4,067</td>
</tr>
</tbody>
</table>

Resalta la incapacidad del F12S10 para cultivar neuronas de ganglios ciliates de embrión de pollo de 8 días, sobre un substrato de p-orn.

En un experimento similar pero sin réplicas obtuvimos el mismo resultado: negativo para el F12S10 y positivo para el MCC.

Confirmando los resultados de Helfand y col. (1976) se decidió probar la capacidad del MCC sobre tres substratos distintos frente a testigos de F12S10 (fig. 1 a 3). La adherencia de las neuronas N⁺, a las 24 h, es mayor en gelatina; intermedia en p-lis e inferior en p-orn. Al ser menor la población adherida a la p-orn, su curva de sufrimiento y extinción es más lenta y suave (fig. 1). La población más numerosa, que es la adherida a la gelatina, cae verticalmente, dentro de las 48 h, se mantiene muy escasamente e inicia una muy lenta recuperación al 5° día. Por el contrario, las N⁻ se adhieren más a la p-orn y a la p-lis; y menos a la gelatina (fig. 2).

Considerando la población total de neuronas (N⁺ + N⁻) la evolución en los tres substratos es similar a la neuronal (N⁺), aunque sobre p-orn parece mantenerse mayor número de células.

En gelatina la población de NN (fig. 3) desarrolla un crecimiento acelerado típico, en perjuicio de las neuronas N⁺ y N⁻ (compárese con la fig. 1), a las que eli-

Abreviaturas:
N⁺ = neuronas con dendritas y axón.
N⁻ = neuronas sin prolongaciones y células redondas.
TN = total de neuronas (N⁺ + N⁻).
NN = no neuronas (glía, fibroblastos).
FIGURA 1. Número de neuronas con dentritas y axón (N+) en un medio cardiocondicionado (MCC), sobre substratos de p-ornitina, p-lisina o gelatina, en PCT25, sembrados con 4.9×10^4 células de ganglios ciliares de embrión de pollo de 8 días.
Atmósfera húmeda de CO$_2$ al 5 p. 100; 37º C.

FIG. 2. Número de neuronas sin prolongaciones (N-) en las condiciones de la fig. 1.

FIG. 3. Número de células no neuronales (NN) en las condiciones de la fig. 1.

FIG. 4. Número de neuronas N+ y N-, a dos densidades de siembra y en las mismas condiciones que en la fig. 1.
minada por exclusión competitiva. El efecto inhibidor de la p-orn y de la p-lis sobre la mitosis de NN aparece muy claramente en la fig. 3.

El hecho más llamativo (fig. 1) es el gran número de neuronas adheridas al substrato de gelatina a las 24 horas. La elevada mortalidad que sobreviene entre el 19.° y el 2.° día quizás dependa de la fuerte competencia de un número tan elevado de neuronas con dendritas y axones y, sobre todo, de la ingente multiplicación de las NN (fig. 3). Es un fenómeno microecológico sobre el que llamamos la atención. En efecto, cada placa es un ecosistema. Proponemos llamar neurosere a la sucesión de fenómenos biológicos observables en un cultivo de células disociadas, procedentes de un órgano o tejido nervioso. Como ecosistemas que son, en nuestras neuroseres deben cumplirse las leyes biológicas de competencia por los recursos limitados, dominancia y exclusión competitiva, subdominancia, sucesión, complementaridad, suplementaridad y producción del máximo posible de biomasa en función de los coeficientes de transformación de cada tipo celular frente a cada factor limitante. Eso equivale a decir, en lenguaje matemático, que la población celular observable al microscopio invertido en cada momento es el clímax o solución del sistema de ecuaciones que describe la situación en términos de un simplex de programación. La ecuación que se minimiza es la de consumo de energía, lo que quiere decir que el neuroecosistema tiende a producir el máximo de biomasa con el mínimo de energía, en función de la composición del medio en cada momento. Lo que presenciamos es la microevolución de una población celular mixta, dentro de la cual las neuronas N+ caminan rápidamente hacia su extinción. De las tres funciones de extinción que pueden ajustarse a las líneas de la fig. 1 la más lenta es la que corresponde al substrato de p-orn.

Las irregularidades e incrementos del tercer día (fig. 1), que se notan sobre las representaciones del crecimiento sobre p-lis y sobre gelatina, se deben al azar de colocación de cada placa para los recuentos diarios. No se nos oculta que el número inicial de células de cada inóculo está afectado de un error experimental importante, pero aún así las diferencias son tan espectaculares que difícilmente se explicarían por el solo efecto del azar.

Probablemente ésta es la primera vez que se consiguió el crecimiento de células ganglionares de embrión de pollo en p-lis (fig. 5) y en gelatina. En esta última, las neuronas, que tienen un excelente aspecto a las 24 h, con muy buenas redes, se mantienen mal y decaen de tal modo que a las 48 h quedan muy pocas vivas, a causa de la rápida proliferación de las células no neuronales, que deben ser fuertes competidoras. Esta observación y el reducido precio de la gelatina, en comparación con los de p-orn y p-lis, sugiere la conveniencia de ensayar la adición de un mitostático a estos cultivos, para inhibir la proliferación de las NN. Lo mismo se puede decir del colágeno isotónico, pues el crecimiento de las neuronas y la formación de redes son muy buenas hasta las 24 h (fig. 6).
FIG. 5. Cultivo de células de ganglio ciliar de embrión de pollo de 8 días, sobre p-L-lisina. 3 ml de MCC. Placa de 35 mm de diámetro. CO₂ al 5 p. 100, 37°C. 3 días. Microscopio Nikon invertido, obj. 20, oc. 10. Contraste de fases. 625 x. 20 de junio de 1977.

FIG. 6. Cultivo de células de ganglio ciliar de embrión de pollo de 8 días, sobre colágeno isotónico. 3 ml de MCC. Idénticas condiciones que en la fig. 5. 24 horas. 625 x.
CUADRO II. Cultivo de células ganglionares ciliares de embrión de pollo en las mismas condiciones que en el cuadro I, pero con una densidad de siembra de 3.6×10^4 células por PCT$_{35}$ sobre substratos de p-orn y p-lis.

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>p-L-ornitina</th>
<th></th>
<th></th>
<th></th>
<th>p-D-lisina</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N+</td>
<td>N⁻</td>
<td>TN</td>
<td>NN</td>
<td>N+</td>
<td>N⁻</td>
<td>TN</td>
<td>NN</td>
</tr>
<tr>
<td>6 h</td>
<td>21.900</td>
<td>0</td>
<td>21.900</td>
<td>18.600</td>
<td>22.950</td>
<td>0</td>
<td>22.950</td>
<td>20.600</td>
</tr>
<tr>
<td>1 d</td>
<td>19.700</td>
<td>5.300</td>
<td>25.000</td>
<td>11.700</td>
<td>11.200</td>
<td>8.750</td>
<td>19.950</td>
<td>10.400</td>
</tr>
<tr>
<td>3 d</td>
<td>2.700</td>
<td>5.900</td>
<td>8.600</td>
<td>5.000</td>
<td>3.950</td>
<td>10.450</td>
<td>14.400</td>
<td>2.550</td>
</tr>
<tr>
<td>4 d</td>
<td>1.200</td>
<td>3.500</td>
<td>4.700</td>
<td>3.600</td>
<td>2.150</td>
<td>6.700</td>
<td>8.850</td>
<td>2.500</td>
</tr>
<tr>
<td>5 d</td>
<td>900</td>
<td>2.900</td>
<td>3.800</td>
<td>3.600</td>
<td>1.700</td>
<td>5.800</td>
<td>7.500</td>
<td>2.350</td>
</tr>
<tr>
<td>6 d</td>
<td>600</td>
<td>1.700</td>
<td>2.300</td>
<td>4.000</td>
<td>1.150</td>
<td>6.000</td>
<td>7.150</td>
<td>1.600</td>
</tr>
</tbody>
</table>

CUADRO III. Cultivo de células ganglionares ciliares de embrión de pollo de 8 días en PCT$_{35}$ de p-L-ornitina, con dos densidades de siembra. MCC; C0$_2$ al 5 p. 100; 37° C.

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>7.6 x 10^4 células por placa</th>
<th>3.6 x 10^4 células por placa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N+</td>
<td>N⁻</td>
</tr>
<tr>
<td>6 h</td>
<td>22.800</td>
<td>0</td>
</tr>
<tr>
<td>1 d</td>
<td>20.100</td>
<td>3.000</td>
</tr>
<tr>
<td>2 d</td>
<td>15.000</td>
<td>2.000</td>
</tr>
<tr>
<td>3 d</td>
<td>2.300</td>
<td>9.400</td>
</tr>
<tr>
<td>4 d</td>
<td>300</td>
<td>4.500</td>
</tr>
<tr>
<td>5 d</td>
<td>400</td>
<td>1.400</td>
</tr>
<tr>
<td>6 d</td>
<td>200</td>
<td>1.000</td>
</tr>
</tbody>
</table>
El número de células que se siembran por placa (densidad) es importante, entre otras razones, por lo reducido de la cosecha que produce la disociación de unos 40 ganglios por hora. Para tantear el efecto de las variaciones de densidad frente a substratos de p-orn y p-lis diseñamos la experiencia que refleja el cuadro II.

Con una densidad de siembra de $3,6 \times 10^4$ células por placa se aprecia un número de neuronas vivas mayor que cuando sembramos 5×10^4.

En el experimento recogido en el cuadro III se ven las diferencias de rendimiento sobre p-orn con una densidad de siembra alta frente a otra baja (fig. 4).

Aunque se evidencia una clara pérdida de células tras el cambio de medio de cultivo al segundo día, no se notan diferencias de rendimiento llamativas entre ambas densidades. Este resultado tiene mucha importancia práctica, porque cuanto más baja sea la densidad de siembra aceptable mayor será el número de placas sobre las que se pueda experimentar.

Los especialistas que trabajan con células de ganglios espinales o simpáticos de pollo suelen emplear altas densidades de siembra, porque su diseción rinde siempre mayor número. Por consejo de S. Varon diseñamos otro experimento para ver el resultado de dos densidades más altas en los substratos siguientes: p-orn, p-lis y colágeno (cuadro IV).

Parece que al incrementar la densidad de siembra aumenta la muerte celular por endurecimiento de la competencia por obtener nutrientes del medio.

En colágeno las altas densidades de siembra dificultan la observación, pues se forman rápidamente tupidas redes y acúmulos celulares que ocultan las neuronas.

Nos propusimos averiguar si una pequeña cantidad de medio cardiocondicionado podría ejercer algún efecto sobre el mantenimiento de las neuronas cultivadas; por eso en el experimento del cuadro V hicimos la disociación de los ganglios ciliares en 5 ml de MCC. Al sembrar las placas de Petri, las cuales contenían 3 ml de medio F12S10, cada una de ellas recibió 0,75 ml de MCC como inoculo.

Se ve que una pequeña cantidad de medio cardiocondicionado tiene un claro efecto sobre el mantenimiento vital de las neuronas, al menos en las primeras 24 horas. Esta experiencia merece ser repetida para ver qué sucede después del primer día. En el experimento descrito se nota un error de dosificación del inoculo en la placa número 3 la cual debió recibir, evidentemente, 2,2 veces más inoculo que las placas número 1, y 1,7 veces más que la n.° 2. Esta modificación involuntaria no parece tener mucho efecto sobre el sostenimiento del número de neuronas, porque la reducción porcentual es similar en las tres placas de p-lis: 34,9 por 100, en la n.° 1; 37,6 por 100 en la no 2 y 34,8 por 100 en la n.° 3.

A petición de Ruben Adler y de Heinz, deseosos de probar la acción de un medio condicionado por músculo esquelético (SKMCM), plantamos un experimento que tenía por objeto ver si el mal efecto inicial del F12S10 se podría mejorar substituyéndolo, bien por el SKMCM, bien por el MCC. En el diseño se incluye también una mezcla de F12S10 y de SKMCM al 50 por 100, para una placa, y un medio pre-
CUADRO IV. Cultivo de células ganglionares ciliares de embrión de pollo de 8 días, en tres substratos, con dos densidades de siembra más altas, MCC, PCT$_{35}$, CO$_2$ al 5 p. 100; 37° C.

p-L-ornitina

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>N$^+$</th>
<th>N$^-$</th>
<th>TN</th>
<th>NN</th>
<th>N$^+$</th>
<th>N$^-$</th>
<th>TN</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 h</td>
<td>25.700</td>
<td>0</td>
<td>25.700</td>
<td>38.200</td>
<td>22.500</td>
<td>0</td>
<td>22.500</td>
<td>21.800</td>
</tr>
<tr>
<td>1 d</td>
<td>12.800</td>
<td>14.200</td>
<td>27.000</td>
<td>10.300</td>
<td>7.500</td>
<td>10.000</td>
<td>17.000</td>
<td>8.000</td>
</tr>
</tbody>
</table>

p-D-lisina

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>N$^+$</th>
<th>N$^-$</th>
<th>TN</th>
<th>NN</th>
<th>N$^+$</th>
<th>N$^-$</th>
<th>TN</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 h</td>
<td>29.800</td>
<td>0</td>
<td>29.800</td>
<td>28.500</td>
<td>25.100</td>
<td>0</td>
<td>25.100</td>
<td>22.200</td>
</tr>
<tr>
<td>1 d</td>
<td>14.800</td>
<td>10.600</td>
<td>25.400</td>
<td>4.000</td>
<td>9.100</td>
<td>8.600</td>
<td>17.700</td>
<td>5.600</td>
</tr>
<tr>
<td>2 d</td>
<td>3.800</td>
<td>8.000</td>
<td>11.800</td>
<td>3.800</td>
<td>3.200</td>
<td>4.400</td>
<td>7.600</td>
<td>5.400</td>
</tr>
</tbody>
</table>

Colágeno

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>N$^+$</th>
<th>N$^-$</th>
<th>TN</th>
<th>NN</th>
<th>N$^+$</th>
<th>N$^-$</th>
<th>TN</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 h</td>
<td>12.500</td>
<td>0</td>
<td>12.500</td>
<td>16.000</td>
<td>10.500</td>
<td>0</td>
<td>10.000</td>
<td>9.600</td>
</tr>
<tr>
<td>1 d</td>
<td>Difícil de contar</td>
<td></td>
<td>Difícil de contar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 d</td>
<td>5.400</td>
<td>1.500</td>
<td>6.900</td>
<td>48.700</td>
<td>12.000</td>
<td>5.700</td>
<td>17.700</td>
<td>15.700</td>
</tr>
</tbody>
</table>
parado por Heinz y bautizado por éste con el acrografo "48" SKMCM. Sembramos 12 PCT 35, sobre substrato de polilisina, con 0,45 ml de suspensión de células de ganglio ciliar de embrión de pollo de 8 días, sobre 2,55 ml de F12S10.

A las 24 horas se cambió el medio del modo siguiente:

<table>
<thead>
<tr>
<th>Placas N.°</th>
<th>Cambio de medio con:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 y 2</td>
<td>F12S10</td>
</tr>
<tr>
<td>3 y 4</td>
<td>MCC</td>
</tr>
<tr>
<td>5 y 6</td>
<td>SKMCM</td>
</tr>
<tr>
<td>7 y 8</td>
<td>SKMCM + F12S10 a partes iguales "48" SKMCM</td>
</tr>
<tr>
<td>9 y 10</td>
<td></td>
</tr>
</tbody>
</table>

Diez horas y media después del cambio los recuentos obtenidos son los que se exponen en el cuadro VI.

Hubo muchas células muertas y no adheridas al substrato. Se observa que sólo el medio cardiocondicionado mostró algún efecto favorable. El medio condicionado a base de músculo esquelético de embrión de pollo fracasó: al 2.° día no quedó viva ninguna neurona con prolongaciones (N⁺).

Con el fin de establecer el número de células supervivientes sobre p-orín, cultivadas en presencia de MCC, emprendimos una serie de 3 réplicas (cuadro VII).

Influencia del capilar utilizado para disociar.

Hay una enorme variación de la población celular según la pipeta que se use para disociar los ganglios ciliares después de tripseinizados.

La reducción del orificio de salida mediante soplete no da diámetros iguales y en consecuencia las cosechas difieren demasiado entre sí: la repetibilidad es mala. Tiene la ventaja de dar mayor cosecha de neuronas. El acoplamiento de un microcapilar de 20 microlitros da cosechas menos variables aunque rinda menos neuronas.

El número de ganglios y el de movimientos de aspiración y expulsión tienen importancia, por lo cual deben mantenerse constantes si se quiere eliminar esta fuente de variación al azar.

Cuando se utilizan pipetas Pasteur prolongadas con un microcapilar de 20 microlitros, cortando un trozo de la punta, suficiente para que se pueda introducir el capilar, unos 3 ó 4 mm, antes de pegarlo todo alrededor con araldite el rendimiento aumenta pero la disociación no siempre es completa, pues en ocasiones se observan en los cultivos pequeños fragmentos de ganglio sin disociar, lo que achacamos al espacio muerto que queda a modo de embudo en la zona de acoplamiento. En la modificación que hemos descrito en métodos, en este mismo trabajo, desaparece este inconveniente y la disociación es más perfecta.
CUADRO V. Cultivo de células ganglionares ciliares de embrión de pollo de 8 días, en substratos de p-lis y colágeno, con 3 ml de medio 12S10 y 0,75 ml de MCC. Densidad de siembra: 7.2 x 10^4 células por PCT35 CO₂ al 5 p. 100; 37° C. Tres réplicas.

p-lisina

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>N⁺</th>
<th>N⁻</th>
<th>TN</th>
<th>NN</th>
<th>Tiempo</th>
<th>N⁺</th>
<th>N⁻</th>
<th>TN</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 h</td>
<td>0</td>
<td>13.400</td>
<td>13.400</td>
<td>21.300</td>
<td>0</td>
<td>17.900</td>
<td>17.900</td>
<td>27.000</td>
<td></td>
</tr>
<tr>
<td>1 d</td>
<td>1.000</td>
<td>4.500</td>
<td>5.500</td>
<td>6.600</td>
<td>2.100</td>
<td>5.300</td>
<td>7.400</td>
<td>9.500</td>
<td></td>
</tr>
</tbody>
</table>

Colágeno

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Placa n.° 4</th>
<th>Placa n.° 5</th>
<th>Placa n.° 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N⁺</td>
<td>N⁻</td>
<td>TN</td>
</tr>
<tr>
<td>6 h</td>
<td>0</td>
<td>15.300</td>
<td>15.300</td>
</tr>
<tr>
<td>1 d</td>
<td>8.500</td>
<td>1.600</td>
<td>10.100</td>
</tr>
</tbody>
</table>
CUADRO VI. Cultivo, sobre polilisina, de células ganglionares ciliares de embrión de pollo de 8 días, iniciado en F12S10 y continuado a las 24 horas con MCC, con medio SKMCM sólo o a partes iguales con F12S10 y con medio "48" SKMCM, de Heinz. Recuento a las 10,30 h del cambio de medio. PCT 36, CO₂ al 5 p. 100; 37° C.

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>N+</th>
<th>N−</th>
<th>TN</th>
<th>NN</th>
<th></th>
<th>N+</th>
<th>N−</th>
<th>TN</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 d</td>
<td>100</td>
<td>2.400</td>
<td>2.500</td>
<td>10.600</td>
<td></td>
<td>300</td>
<td>900</td>
<td>1.200</td>
<td>11.600</td>
</tr>
<tr>
<td>2 d</td>
<td>0</td>
<td>500</td>
<td>500</td>
<td>1.000</td>
<td></td>
<td>100</td>
<td>800</td>
<td>900</td>
<td>1.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>N+</th>
<th>N−</th>
<th>TN</th>
<th>NN</th>
<th></th>
<th>N+</th>
<th>N−</th>
<th>TN</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 d</td>
<td>100</td>
<td>600</td>
<td>700</td>
<td>13.300</td>
<td>600</td>
<td>2.600</td>
<td>3.200</td>
<td>22.100</td>
<td></td>
</tr>
<tr>
<td>2 d</td>
<td>0</td>
<td>300</td>
<td>300</td>
<td>1.200</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>N+</th>
<th>N−</th>
<th>TN</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 d</td>
<td>400</td>
<td>700</td>
<td>1.100</td>
<td>13.800</td>
</tr>
<tr>
<td>2 d</td>
<td>0</td>
<td>700</td>
<td>700</td>
<td>400</td>
</tr>
</tbody>
</table>
CUADRO VII. Número de células en función del tiempo. Resultados medios de tres réplicas en p-orn con MCC.Células de ganglios ciliare de embrión de pollo de 8 días, cultivadas en atmósfera de CO₂ al 5 p. 100 y a 37° C en PCT₃₅

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>N+</th>
<th>N⁻</th>
<th>TN</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 h</td>
<td>700</td>
<td>12.933</td>
<td>13.633</td>
<td>17.067</td>
</tr>
<tr>
<td>1 d</td>
<td>9.933</td>
<td>7.500</td>
<td>17.433</td>
<td>7.267</td>
</tr>
<tr>
<td>2 d</td>
<td>3.467</td>
<td>5.367</td>
<td>8.833</td>
<td>5.467</td>
</tr>
<tr>
<td>3 d</td>
<td>2.667</td>
<td>3.933</td>
<td>6.600</td>
<td>3.567</td>
</tr>
<tr>
<td>4 d</td>
<td>2.200</td>
<td>3.233</td>
<td>5.433</td>
<td>1.583</td>
</tr>
<tr>
<td>5 d</td>
<td>1.567</td>
<td>3.033</td>
<td>4.600</td>
<td>2.733</td>
</tr>
</tbody>
</table>

Aunque S. Varon y otros especialistas no son partidarios del análisis estadístico de las diferencias numéricas de los rendimientos, en este tipo de experimentos, pues sólo les interesan las muy notables, nosotros lo creemos indispensable. El análisis de la varianza del efecto del MCC frente a los testigos (con F_{12S10} solo) da diferencias numéricas significativas, para neuronas, sólo al 5.º día (F = 169*). Las hay significativas a los 2 días de cultivo (F = 142.23**) para N⁻, y a los 5 días (F = 19.91*). Tampoco son aleatorias (F = 47.6*) las diferencias de los rendimientos en los strustratos p-orn, p-lis y gelatina, en este orden, por lo que se refiere a N⁻.

La dócima de Fisher no detecta diferencias dignas de tenerse en cuenta a los dos días, respecto al número de neuronas N⁺ (F = 0.88 en tres strustratos; F = 3.24, en MCC frente a F_{12S10}). Sin embargo, con un criterio práctico el efecto del MCC resulta evidente frente a la acción letal del F_{12S10}.

La limitación de la cosecha de ganglios impone establecer un número de réplicas suficiente para que la dócima de Fisher compense el error experimental que afecta al número de células realmente sembradas, el cual varía mucho de una placa a otra, de la misma tanda.

El análisis factorial de varianza dio los valores recogidos en el cuadro VIII.
CUADRO VIII. Análisis factorial de varianza de dos experimentos distintos sobre tres substratos: p-orn, p-lis y colágeno, con MCC 5×10^4 células por placa de 35 mm de diámetro.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Grados de libertad</th>
<th>F</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre tipos celulares</td>
<td>3 y 55</td>
<td>10.481</td>
<td>10.936</td>
</tr>
<tr>
<td>– substratos</td>
<td>2 y 55</td>
<td>8.8783</td>
<td>12.223</td>
</tr>
<tr>
<td>Interacción</td>
<td>6 y 55</td>
<td>12.65</td>
<td>12.639</td>
</tr>
<tr>
<td>Entre días</td>
<td>5 y 55</td>
<td>0.3928</td>
<td>0.4248</td>
</tr>
</tbody>
</table>

Resaltan las diferencias altamente significativas ($p \leq 0.001$) de los rendimientos de los diversos substratos para las cuatro clases de células contadas y la muy fuerte interacción ($p \leq 0.001$). Sin embargo, el análisis estadístico pone de manifiesto que el error experimental de la medida del número de células por inóculo es muy alto. Eso se debe a dos causas principales: 1.ª, la homogenización del inóculo no suele ser buena; 2.ª, la siembra mediante pipeta de 1 ml dividido en décimas es poco precisa. Si se siembra de una sola vez todo el volumen de las réplicas, se homogeniza con el vibrador todo el líquido y luego se reparten los volúmenes correspondientes a cada réplica, se disminuye considerablemente esta fuente de error y la décima F será mucho más sensible al analizar diseños factoriales. Si el error entre placas replicadas es grande, por defectuosa dosificación del inóculo, el análisis de varianza pierde casi todo su valor y los resultados experimentales no pueden generalizarse.

El análisis de los rendimientos de cultivo sobre p-orn, p-lis y colágeno, con MCC, respecto a los cuatro tipos celulares contados, se compendia en el cuadro IX.

CUADRO IX. Análisis de varianza de las diferencias entre substratos respecto a la cosecha de células.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>g. l.</th>
<th>F</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>N^+</td>
<td>2 y 15</td>
<td>0.195</td>
<td>0.739</td>
</tr>
<tr>
<td>N^-</td>
<td>2 y 15</td>
<td>23.147 ***</td>
<td>11.116***</td>
</tr>
<tr>
<td>TN</td>
<td>2 y 15</td>
<td>2.184</td>
<td>0.564</td>
</tr>
<tr>
<td>NN</td>
<td>2 y 15</td>
<td>12.781 ***</td>
<td>13.526 ***</td>
</tr>
</tbody>
</table>
Nuestra técnica de disección obtusa de ganglios ciliares no requiere sujetar la cabeza del embrión con alfileres y es más rápida que la de Helfand y col. Disociamos los ganglios con pipetas Pasteur a las que se pegan sendas micropipetas Volupett de 20 μl, previo acoplamiento mediante un corto tubito de teflón. Los resultados son más uniformes que cuando se cierra parcialmente el orificio con microllama.

En medio F12S10 no condicionado las neuronas no cultivan ni sobreviven en substratos de p-L-ornitina, p-D-lisina, colágeno isotónico o gelatina.

Con medio cardiocondicionado (MCC) las neuronas cultivan y sobreviven en p-orn y p-lis, durante una semana o poco más. Sobre colágeno isotónico o gelatina crecen bien hasta las 24 horas; después sucumben bajo la competencia de los otros tipos celulares (NN).

Sobre p-orn parece mantenerse una población de neuronas mayor que sobre p-lis.

El incremento del número de células sembradas por placa, en p-orn, p-lis y colágeno, con densidades de 5 x 10⁴, 6.5 x 10⁴, 7.6 x 10⁴ y 1.3 x 10⁵, no parece mejorar los resultados obtenidos partiendo de 3.6 x 10⁴ células por inóculo.

La adición de 0.75 ml de MCC a 3 ml de F12S10 permite el crecimiento y la supervivencia de neuronas, al menos durante 24 horas.

Un medio condicionado por músculo esquelético (SKMCM) resultó letal para las neuronas.

Consideramos que cada placa de cultivo de células nerviosas es un ecosistema que proponemos llamar neuroecosistema, con una evolución adaptativa temporal que denominamos neurosere. En nuestras neuroseres sobre p-orn la población de neuronas N⁺ disminuye aceleradamente, independientemente de la densidad de siembra. La población de N⁻ tiene su máximo al tercer día, coincidiendo con la caída numérica de las N⁺. Sobre p-D-lisina la curva de extinción es similar aún a densidades de 1.3 x 10⁵.

Summary.

Our technique for dissection of ciliary ganglia has several advantages. It does not require pinning the embryo head and is faster than procedure of Helfand et al. Our method for dissociation requires using Pasteur pipettes, which have a 20 μl micropipett (Volupett) joined on the tip by Araldite. This reduces the harvest variability, making it lower than when the orifice is reduced by a microflame.
Our research produced the following results. In a non-conditioned F12S10 medium neurons did not survive on poly-L-orninone, poly-D-lysine, colagen, and gelatin. In HCM neurons extended neurites, formed nets, and survived on p-orn or p-lys for a week or a little longer. On isotonic colagen and on gelatin the neurons grow well for 24 hours. They decreased in number or died. This was due to the competition pressure of non-neurons. A larger number of neurons seemed to be able to grow and survive on p-orn than on p-lys. Densities higher than 3.6×10^4 cells per dish did not improve the results. The addition of 0.75 ml of HCM to 3 ml of F12S10 reinforced the growth and survival of neurons for at least 24 hours. A medium conditioned on skeletal muscle cells had deleterious effect on neurons.

The author considers each dish of nerve cell cultures as an ecosystem (neuroecosystem), having an adaptive evolution (neuroseres). Considering the neuroseres of cultures grown on p-orn, the population of neurons N^+ decreases rapidly, even at high plating densities. The N^- population reached its maximum density on the third day when the number of N^+ fell. On p-lys extinction process followed a similar pattern, even at a plating density of 1.3×10^5.

Reconocimiento.

Al prof. Dr. Silvio Varon y a sus colaboradores, por su inestimable dirección y ayuda durante mi estancia en su Departamento, en el cual realicé la parte experimental de este trabajo. A Ruben Adler y a Heinz, por sus consejos.

A la señorita Aurora González, del Instituto de zootecnia, del C. S. I. C., por su valiosísima cooperación en el Centro de cálculo electrónico de la Universidad de Córdoba y en nuestro Departamento de biología. A D. José María Rodero Franganillo, del mismo Instituto, por su amable colaboración en el análisis factorial de varianza.

A la Comisión asesora de investigación científica y técnica y a la Comisión de cooperación cultural entre España y EE. UU. de América, por su decisiva ayuda financiera.

Bibliografía.