RELACIONES ENTRE DIAMETRO DEL TALLO Y PESO DE LAS RAMAS EN CUATRO ESPECIES LEÑOSAS MEDITERRANEAS.

(WEIGHT-DIAMETER RELATIONSHIPS IN FOUR BROWSE SPECIES).

por

Summary

Potential regression equations were fitted for twig weight-diameter and green-dried diameter relationships in four browse species: oak (Quercus ilex), cork oak (Q. suber), strawberry tree (Arbutus unedo), and turpentine tree (Pistacia terebinthus). Weight-diameter prediction equations, accounting for 60 to 80 per cent of observed variation, allow the calculation of weight of twigs corresponding to any diameter between 2 to 9 mm. Green-dried diameter prediction equations have a very high determination coefficient ($r^2=0.92$) and a general equation has been established.

Resumen

Se ajustan ecuaciones de regresión entre peso y diámetro del tallo en cuatro especies arbóreas o arbustivas del área mediterránea (Quercus...
ilex L., Q. suber L., Arbutus unedo L. y Pistacia terebinthus L.). Las variaciones en el diámetro pueden justificarse entre el 60 y el 80% de las variaciones en el peso de las ramas. Así mismo se obtiene una ecuación general de regresión (Y = 1.31X^{0.92}) que sugiere que los tallos de las especies estudiadas se contraen de manera similar durante la desecación subsiguiente al ramoneo.

Introducción

El conocimiento de la fitomasa de árboles o arbustos disponible para los herbívoros domésticos o de vida libre, o la valoración de la que ha sido ramoneada por ellos, es un asunto que cada día reviste mayor interés. Sin embargo, su cuantificación es tediosa o imprecisa, según los métodos que se pongan en práctica en la apreciación; no obstante, el empleo de ecuaciones de regresión puede simplificar notablemente el problema. Efectivamente, diversos autores han desarrollado este tipo de ecuaciones en las que, a partir de una o más variables independientes, es fácil conocer, con cierto grado de precisión, la cantidad de fitomasa correspondiente a un tallo concreto. En todo caso, las determinación de la oferta alimenticia debe concretarse a lo que realmente puede constituir la ingesta; lo que, según Basile y Hutchings 1, incluye los tallos terminales producidos en una rama durante la última estación de crecimiento; concepto que Telfer 6 amplía a la parte distal de las ramas, cuyo diámetro sea igual al máximo diámetro de utilización observado y que, naturalmente, debe encontrarse en una zona accesible al animal que lo utiliza (por debajo de los 2,1 m, para el ciervo 5).

Estas consideraciones implican que no toda la fitomasa presente es capaz de ser aprovechada, por lo que el problema de su cuantificación se concreta a sólo una parte del total: a la que exclusivamente deben referirse los métodos empleados. Desde este punto de vista, el uso de ecuaciones de regresión a partir de medidas sencillas, obtenidas sobre las plantas, cobra especial interés. Parece ser que la longitud del tallo es la mejor correlacionada con su peso, aunque el diámetro es más fácil de obtener 5. El empleo del diámetro del tallo en ecuaciones de predicción se justifica, aun más, cuando se desea predecir el peso de arbusto que correspondería a un tallo previamente cortado (p.ej.: por ramoneo).

En el presente trabajo se pretende establecer ecuaciones de regresión entre peso y diámetro del tallo de cuatro especies arbóreas o arbust-
tivas del climax mediterráneo y, así mismo, en un intento de aproximación a su empleo en estudios de utilización animal, analizar cuál es la disminución que se produce en el diámetro de la planta al desecarse el tallo seccionado, que tras el ramoneo, muere hasta el nudo inmediato inferior.

Material y métodos

Los diámetros y pesos de unos 50 tallos de Quercus ilex L., Q. suber L., Arbutus unedo L. y Pistacia theabínthus L. fueron obtenidos durante el periodo de reposo vegetativo, en áreas de sierra al norte de la provincia de Córdoba. Todos los tallos, entre 2 y 9 mm, fueron obtenidos a una altura no superior a los 2 m del nivel del suelo. El diámetro de los tallos fue medido recién cortados y tras desecación en estufa de aire.

Resultados y discusión

Los valores medios obtenidos en cada especie, para cada clase de diámetro, se exponen en la tabla I, de cuyo examen puede deducirse ya la conveniencia de ajustar cuatro diferentes ecuaciones de regresión 5, porque de otro modo el método podría resultar ineficaz 2, como consecuencia de la diversidad de los datos relativos a cada especie. Sometidos éstos al análisis de la correlación y ajuste de ecuaciones de regresión, los mejores resultados han correspondido, en todos los casos, a curvas potenciales, de acuerdo con lo ya señalado 4, 6. Es elevada la significación estadística (p < 0.001). Los valores de r no son especialmente altos, aunque permiten explicar entre el 81 y casi el 60 % de la variación observada en el peso del tallo, a partir de la variación de su diámetro (tabla II). Los más bajos valores del coeficiente de determinación pueden atribuirse a errores de medición posiblemente originados por irregularidades en la textura o forma del tallo. De cualquier forma, estos datos revisten importancia, no sólo para la predicción de la fitosoma ofertada por las plantas, sino también para conocer a posteriori el empleo que los distintos herbívoros pueden hacer de tal recurso alimenticio. En este sentido, la aplicación de las ecuaciones de regresión ajustadas permite el conocimiento de la cantidad inmediatamente consumida, simplemente midiendo el diámetro en el punto de utilización, lo que si se refiere al diámetro del crecimiento anual,
mediante la expresión de Wetzel, Wambaugh y Peek:

\[
\text{Utilización} = \frac{\text{Diámetro medio en el punto de utilización}}{\text{Diámetro medio del último crecimiento}} \times 100
\]

permite tener un conocimiento de la intensidad de utilización, importante a efectos de manejo, ya que, según diversos autores han demostrado, utilizaciones entre el 50 y 75% pueden resultar demasiado graves para la supervivencia de las plantas. Sin embargo, una vez que el tallo ha sido cortado se produce la muerte del mismo hasta el nudo inmediato por debajo del corte, por lo que, si las medidas se obtienen con posterioridad (p.ej., meses después), se produce una desecación del tallo terminal, que origina una reducción del diámetro y, por tanto, una estimación por defecto de la cantidad utilizada. Por esta razón se han establecido ecuaciones de regresión entre el diámetro del tallo en verde y tras desecación en estufa de aire, para simular la eliminación natural del agua y subsiguiente contracción. Se ha obtenido una elevada correlación entre ambos valores y, dadas las características similares de las distintas ecuaciones de regresión halladas, se ha ajustado también una ecuación general que, con las anteriores, se expone en la tabla III y podría ser indicadora de una pauta de retracción similar para varias especies.

En resumen, puede señalarse que los valores del diámetro y peso de los tallos de las especies consideradas se encuentran relacionados, aunque la variabilidad que podría derivarse de forma y textura de los tallos reduce la bondad del ajuste que, en cualquier caso, permite explicar al menos el 60% de la variación observada. Aparentemente, el diámetro del tallo se reduce tras la desecación que se produce después del ramoneo, y es probable que el grado de retracción sea similar en las diferentes especies, según sugiere el elevado coeficiente de correlación obtenido para el conjunto de los datos.

Bibliografía

Tabla I. Pesos medios (en gramos) para cada clase de diámetro del tallo (en milímetros) en cuatro especies arbustivas.

<table>
<thead>
<tr>
<th>Clase de diámetro (mm)</th>
<th>Q. ilex (g)</th>
<th>Q. suber (g)</th>
<th>A. unedo (g)</th>
<th>P. terebinthus (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2.99</td>
<td>5.90</td>
<td>10.45</td>
<td>7.65</td>
<td>4.45</td>
</tr>
<tr>
<td>3-3.99</td>
<td>13.51</td>
<td>14.23</td>
<td>13.96</td>
<td>8.25</td>
</tr>
<tr>
<td>4-4.99</td>
<td>18.73</td>
<td>21.72</td>
<td>25.01</td>
<td>13.06</td>
</tr>
<tr>
<td>5-5.99</td>
<td>28.44</td>
<td>30.12</td>
<td>37.23</td>
<td>21.80</td>
</tr>
<tr>
<td>6-6.99</td>
<td>36.77</td>
<td>39.11</td>
<td>53.98</td>
<td>33.69</td>
</tr>
<tr>
<td>7.7.99</td>
<td>55.94</td>
<td>54.79</td>
<td>69.52</td>
<td>46.29</td>
</tr>
<tr>
<td>8-8.99</td>
<td>-</td>
<td>56.84</td>
<td>74.95</td>
<td>70.07</td>
</tr>
</tbody>
</table>
Tabla II. Ecuaciones de predicción para el peso.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Ecuación de regresión</th>
<th>r</th>
<th>Significación estadística</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q. ilex</td>
<td>$Y = 0.95 X^{1.96}$</td>
<td>0.76</td>
<td>$p \leq 0.001$</td>
</tr>
<tr>
<td>Q. suber</td>
<td>$Y = 1.78 X^{1.63}$</td>
<td>0.76</td>
<td>$p \leq 0.001$</td>
</tr>
<tr>
<td>A. unedo</td>
<td>$Y = 1.02 X^{2.11}$</td>
<td>0.90</td>
<td>$p \leq 0.001$</td>
</tr>
<tr>
<td>P. terebinthus</td>
<td>$Y = 0.40 X^{2.33}$</td>
<td>0.79</td>
<td>$p \leq 0.001$</td>
</tr>
</tbody>
</table>

Tabla III. Ecuaciones de predicción para el diámetro verde.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Ecuación de regresión</th>
<th>r</th>
<th>Significación estadística</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q. ilex</td>
<td>$Y = 1.18 X^{0.97}$</td>
<td>0.95</td>
<td>$p \leq 0.001$</td>
</tr>
<tr>
<td>Q. suber</td>
<td>$Y = 1.35 X^{0.89}$</td>
<td>0.95</td>
<td>$p \leq 0.001$</td>
</tr>
<tr>
<td>A. unedo</td>
<td>$Y = 1.33 X^{0.93}$</td>
<td>0.95</td>
<td>$p \leq 0.001$</td>
</tr>
<tr>
<td>P. terebinthus</td>
<td>$Y = 1.61 X^{0.80}$</td>
<td>0.85</td>
<td>$p \leq 0.001$</td>
</tr>
<tr>
<td>GENERAL</td>
<td>$Y = 1.31 X^{0.92}$</td>
<td>0.95</td>
<td>$p \leq 0.001$</td>
</tr>
</tbody>
</table>