Analysis of thylakoid membrane protein complexes from maize by Blue-Native Gel Electrophoresis and Tandem Mass Spectrometry

A. Campos, A. Coelho, L. Arike, R. Santos, C. Franco, P. Carvajal-Vallejos, M.A. Santos, J.M. Torné, A.V. Coelho

1) Instituto de Tecnologia Química e Biológica, Oeiras, Portugal; 2) Institut de Biologia Molecular de Barcelona, Consorci CSIC-IRTA, Barcelona, Spain; 3) Institut National des Sciences Appliquées, Toulouse, France; 4) Tallinn University of Technology, Tallinn, Estonia; 5) Universidade de Évora, Évora, Portugal.

Contact e-mail: acampos@itqb.unl.pt

Introduction

Blue-Native Polyacrylamide Gel Electrophoresis (BN-PAGE) is a powerful technique to separate and analyse protein complexes from biological membranes. The technique was developed to separate protein complexes from mitochondria (Schägger and Von Jagow, 1991) but has been extended to the analysis of proteins of different membrane systems (Heinemeyer et al., 2007). Regarding a research project aimed in the study of the function of maize chloroplastidial transglutaminase (chT-Gase) and the characterisation of protein post-translational modifications (PTM’s) mediated by this enzyme (Villalobos et al., 2004; Carvajal-Vallejos et al., 2007; Santos et al., 2007) we undertaken a work to optimize the solubilisation of thylakoid protein complexes from maize and characterize the complexes by BN-PAGE and mass spectrometry (MS). Using the non-ionic detergent n-dodecyl-β-D-maltoside (DDM) at 1.3% (w/v) (Heinemeyer et al., 2007), to protein concentrations of 2, 3 and 6 mg/ml. Efficiency of protein solubilization was assessed by BN-PAGE (Heinemeyer et al., 2007). Results are presented in terms of the ratio between detergent and protein weight in the sample. A second experiment was made to verify the effects of detergent concentration (0.95%-1.8%) on BN-PAGE protein patterns, taking as reference the most suitable solubilization condition considered in the first experiment. Protein bands from BN-PAGE gels were isolated, digested according to Pandey et al. (2000) and analyzed by micro LC-MS/MS (LTQ mass spectrometer, Thermo Finnigan). Peptides were concentrated in a Peptrap (ThermoElectron) and separated in a reversed-phase column (ThermoElectron) with a linear gradient of 5% to 80% acetonitrile with 0.1% formic acid at flow rate of 2µL/min. All product ion spectra were searched using TurboSEQUEST (Bioworks 3.3.1, Thermo Finnigan, San Jose, CA, USA) against UniProt database (downloaded from NCBI website, 5128948 protein entries). Peptide recognition take in account a peptide probability superior to 0.01 and Xcorr correlation with charge state of 1.5, 2.0, 2.5 and 3.0 for 1+, 2+, 3+ and 4+ charged peptides.

Results

Proteins from thylakoid membranes were solubilized with different ratios of detergent to protein
Proteómica • Número 2 • Diciembre 2008

61

A general BN-PAGE pattern for maize can be described that is in accordance with previous works of BN-PAGE from thylakoid membranes of higher plants. High similarity is verified with barley thylakoid protein complexes separated by BN-PAGE (Ciambella et al., 2005) consisting in the existence of LHCII-PSII and LHCI-PSI supercomplexes (> 600 kDa), LHCI-PSI complex and PSII dimeric core (band 2), Cyt b6/f dimer, ATPase and PSII monomer core complexes (bands 3 and 4) and the trimer and monomer LHCII (bands 5 and 6, respectively).

Figure 1. Solubilization of thylakoid protein complexes and separation by BN-PAGE. Solubilization performed at a DDM to protein weight ratio of 1:1 (1), 2:1 (2), 5:1 (3), 6.4:1 (4), 8:1 (5) and 10:1 (6). Decrease (a) and increase (b) in abundance of thylakoid complexes.

Figure 2. Protein identification by LC-MS/MS and assessment of thylakoid complexes separated by BN-PAGE. Underlined are the complexes that were reported also by other authors.

Conclusions

In this work we were able to establish a procedure to solubilize maize thylakoid protein complexes. Blue-native PAGE allowed the separation of complexes and further analysis by MS. Protein identification was achieved and sequence information of the several complex subunits obtained. This approach allows a level of fractionation of thylakoid membrane proteome suitable for a deeper characterization of the subunits of the complexes including LHCII proteins. Ongoing work consists in establish the second-dimension from BN-PAGE in denaturing conditions, the analysis of thylakoid proteins by MS in conditions of chloroplastidial transglutaminase activity and identification of post-translational modifications mediated by this enzyme.

References

Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications

Maria G. Egidi, Anna Maria Timperio, Sara Rinalducci, Giovanni Monastra*, Lello Zolla

Lab. of Proteomics and Genomics, Department of Environmental Sciences, University of Tuscia, 01100, Viterbo, Italy. * Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione (INRAN), Roma, Italy

In order to improve the probability of detecting unintended side effects during maize gene manipulations by bombardment, proteomics was used as an analytical tool complementary to the existing safety assessment techniques. Since seed proteome is highly dynamic, depending on the species variability and environmental influence we analyzed the proteomic profiles of one transgenic maize variety (event MON 810) in T5 and T6 generation with their respective isogenic controls (F5 and F6). Thus, by comparing the proteomic profiles of F5 with F6 we could determine the environmental effects, while the comparison between F6 and T6 seeds from plants grown under controlled conditions allowed us to investigate the effects of DNA manipulation. Finally, by comparing T5 with T6 seed proteomes it was possible to get some indications about similarities and differences between the adaptations of transgenic and isogenic plants to the same strictly controlled growth environment. Approximately 100 total proteins resulted differentially modulated in the expression level as a consequence of the environmental influence (F6 vs. F5), whereas 43 proteins resulted up- or down-regulated in transgenic seeds with respect to their controls (T6 vs. F6), which could be specifically related to the insertion of a single gene into a maize genome by particle bombardment. Transgenic seeds responded differentially to the same environment as compared to their respective isogenic controls, as result of the genome rearrangement derived from gene insertion. To conclude, an exhaustive differential proteomic analysis allows to determine similarities and differences between traditional food and new products (substantial equivalence), and a case-by-case assessment of the new food should be carried out in order to have a wide knowledge of its features.

1 This contribution was presented at the II Meeting (WG 2) of the Plant Proteomics in Europe- COST Action FA 0603