New Hybrid Learning Models for Multi-label Classification and Label Ranking
Nuevos Modelos de Aprendizaje Híbrido para Clasificación y Ordenamiento Multi-Etiqueta

View/ Open
Author
Reyes Pupo, Oscar Gabriel
Director/es
Ventura Soto, S.Publisher
Universidad de Córdoba, UCOPressDate
2016Subject
Clasificación Multi-EtiquetaTratamiento de datos
Aprendizaje híbrido
Estimación de atributos
Minería de datos
Inteligencia artificial
Multi-label classification
Data treatment
Hybrid learning
Feature estimation
Evolutionary algorithms
Data Mining (DM)
Artificial intelligence
METS:
Mostrar el registro METSPREMIS:
Mostrar el registro PREMISMetadata
Show full item recordAbstract
En la última década, el aprendizaje multi-etiqueta se ha convertido en una importante tarea de investigación, debido en gran parte al creciente número de problemas reales que contienen datos multi-etiqueta. En esta tesis se estudiaron dos problemas sobre datos multi-etiqueta, la mejora del rendimiento de los algoritmos en datos multi-etiqueta complejos y la mejora del rendimiento de los algoritmos a partir de datos no etiquetados. El primer problema fue tratado mediante métodos de estimación de atributos. Se evaluó la efectividad de los métodos de estimación de atributos propuestos en la mejora del rendimiento de los algoritmos de vecindad, mediante la parametrización de las funciones de distancias empleadas para recuperar los ejemplos más cercanos. Además, se demostró la efectividad de los métodos de estimación en la tarea de selección de atributos. Por otra parte, se desarrolló un algoritmo de vecindad inspirado en el enfoque de clasifcación basada en gravitación de datos. Este algoritmo garantiza un balance adecuado entre eficiencia y efectividad en su solución ante datos multi-etiqueta complejos. El segundo problema fue resuelto mediante técnicas de aprendizaje activo, lo cual permite reducir los costos del etiquetado de datos y del entrenamiento de un mejor modelo. Se propusieron dos estrategias de aprendizaje activo. La primer estrategia resuelve el problema de aprendizaje activo multi-etiqueta de una manera efectiva y eficiente, para ello se combinaron dos medidas que representan la utilidad de un ejemplo no etiquetado. La segunda estrategia propuesta se enfocó en la resolución del problema de aprendizaje activo multi-etiqueta en modo de lotes, para ello se formuló un problema multi-objetivo donde se optimizan tres medidas, y el problema de optimización planteado se resolvió mediante un algoritmo evolutivo. Como resultados complementarios derivados de esta tesis, se desarrolló una herramienta computacional que favorece la implementación de métodos de aprendizaje activo y la experimentación en esta tarea de estudio. Además, se propusieron dos aproximaciones que permiten evaluar el rendimiento de las técnicas de aprendizaje activo de una manera más adecuada y robusta que la empleada comunmente en la literatura. Todos los métodos propuestos en esta tesis han sido evaluados en un marco experimental
adecuado, se utilizaron numerosos conjuntos de datos y se compararon
los rendimientos de los algoritmos frente a otros métodos del estado del arte. Los
resultados obtenidos, los cuales fueron verificados mediante la aplicación de test
estadísticos no paramétricos, demuestran la efectividad de los métodos propuestos
y de esta manera comprueban las hipótesis planteadas en esta tesis. In the last decade, multi-label learning has become an important area of research
due to the large number of real-world problems that contain multi-label data. This
doctoral thesis is focused on the multi-label learning paradigm. Two problems were
studied, rstly, improving the performance of the algorithms on complex multi-label
data, and secondly, improving the performance through unlabeled data.
The rst problem was solved by means of feature estimation methods. The e ectiveness
of the feature estimation methods proposed was evaluated by improving
the performance of multi-label lazy algorithms. The parametrization of the distance
functions with a weight vector allowed to recover examples with relevant
label sets for classi cation. It was also demonstrated the e ectiveness of the feature
estimation methods in the feature selection task. On the other hand, a lazy
algorithm based on a data gravitation model was proposed. This lazy algorithm
has a good trade-o between e ectiveness and e ciency in the resolution of the
multi-label lazy learning.
The second problem was solved by means of active learning techniques. The active
learning methods allowed to reduce the costs of the data labeling process and
training an accurate model. Two active learning strategies were proposed. The
rst strategy e ectively solves the multi-label active learning problem. In this
strategy, two measures that represent the utility of an unlabeled example were
de ned and combined. On the other hand, the second active learning strategy proposed
resolves the batch-mode active learning problem, where the aim is to select a
batch of unlabeled examples that are informative and the information redundancy
is minimal. The batch-mode active learning was formulated as a multi-objective
problem, where three measures were optimized. The multi-objective problem was
solved through an evolutionary algorithm.
This thesis also derived in the creation of a computational framework to develop
any active learning method and to favor the experimentation process in the active
learning area. On the other hand, a methodology based on non-parametric
tests that allows a more adequate evaluation of active learning performance was
proposed. All methods proposed were evaluated by means of extensive and adequate experimental
studies. Several multi-label datasets from di erent domains were used, and
the methods were compared to the most signi cant state-of-the-art algorithms. The
results were validated using non-parametric statistical tests. The evidence showed
the e ectiveness of the methods proposed, proving the hypotheses formulated at
the beginning of this thesis.