Enhanced wheat yield by biochar addition under different mineral fertilization levels

View/ Open
Author
Salazar, Pablo
Barrón, Vidal
Torrent, J.
Campillo, María del Carmen del
Gallardo, Antonio
Villar, Rafael
Alburquerque, José Antonio
Publisher
INRA-SpringerDate
2013Subject
Agricultural wastesBiochar
Grain yield
Nitrogen
Phosporus
Plant growth
Wheat
METS:
Mostrar el registro METSPREMIS:
Mostrar el registro PREMISMetadata
Show full item recordAbstract
Climate change and global warming have worldwide
adverse consequences. Biochar production and its use in
agriculture can play a key role in climate change mitigation
and help improve the quality and management of waste materials
coming from agriculture and forestry. Biochar is a carbonaceous
material obtained from thermal decomposition of
residual biomass at relatively low temperature and under
oxygen limited conditions (pyrolysis). Biochar is currently a
subject of active research worldwide because it can constitute
a viable option for sustainable agriculture due to its potential
as a long-term sink for carbon in soil and benefits for crops.
However, to date, the results of research studies on biochar
effects on crop production show great variability, depending
on the biochar type and experimental conditions. Therefore, it
is important to identify the beneficial aspects of biochar addition
to soil on crop yield in order to promote the adoption of
this practice in agriculture. In this study, the effects of two
types of biochar from agricultural wastes typical of Southern
Spain: wheat straw and olive tree pruning, combined with
different mineral fertilization levels on the growth and yield
of wheat (Triticum durum L. cv. Vitron) were evaluated.
Durum wheat was pot-grown for 2 months in a growth chamber
on a soil collected from an agricultural field near Córdoba,
Southern Spain. Soil properties and plant growth variables
were studied in order to assess the agronomic efficiency of
biochar. Our results show that biochar addition to a nutrientpoor,
slightly acidic loamy sand soil had little effect on wheat
yield in the absence of mineral fertilization. However, at the
highest mineral fertilizer rate, addition of biochar led to about
20–30 % increase in grain yield compared with the use of the
mineral fertilizer alone. Both biochars acted as a source of
available P, which led to beneficial effects on crop production.
In contrast, the addition of biochar resulted in decreases in
available N and Mn. A maximum reduction in plant nutrient
concentration of 25 and 80% compared to nonbiochar-treated
soils for N and Mn, respectively, was detected. This fact was
related to the own nature of biochar: low available nitrogen
content, high adsorption capacity, and low mineralization rate
for N; and alkaline pH and high carbonate content for Mn. Our
results indicate that biochar-based soil management strategies
can enhance wheat production with the environmental benefits
of global warming mitigation. This can contribute positively
to the viability and benefits of agricultural production
systems. However, the nutrient–biochar interactions should
receive special attention due to the great variability in the
properties of biochar-type materials.