• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Selecting patterns and features for between- and within- crop-row weed mapping using UAV-imagery

Thumbnail
View/Open
ESWAPrecAgric2015.pdf (4.796Mb)
Author
Pérez-Ortiz, María
Gutiérrez, Pedro A.
Torres-Sánchez, Jorge
Hervás-Martínez, César
López-Granados, Francisca
Peña, José Manuel
Date
2017-03-30
Subject
Remote sensing
Unmanned aerial vehicles
UAV
Weed detection
Objet based image analysis
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
This paper approaches the problem of weed mapping for precision agriculture, using imagery provided by Unmanned Aerial Vehicles (UAVs) from sun ower and maize crops. Precision agriculture referred to weed control is mainly based on the design of early post-emergence site-speci c control treatments according to weed coverage, where one of the most important challenges is the spectral similarity of crop and weed pixels in early growth stages. Our work tackles this problem in the context of object-based image analysis (OBIA) by means of supervised machine learning methods combined with pattern and feature selection techniques, devising a strategy for alleviating the user intervention in the system while not compromising the accuracy. This work rstly proposes a method for choosing a set of training patterns via clustering techniques so as to consider a representative set of the whole eld data spectrum for the classi cation method. Furthermore, a feature selection method is used to obtain the best discriminating features from a set of several statistics and measures of di erent nature. Results from this research show that the proposed method for pattern selection is suitable and leads to the construction of robust sets of data. The exploitation of di erent statistical, spatial and texture metrics represents a new avenue with huge potential for between and within crop-row weed mapping via UAV-imagery and shows good synergy when complemented with OBIA. Finally, there are some measures (specially those linked to vegetation indexes) that are of great in uence for weed mapping in both sun ower and maize crops
URI
http://hdl.handle.net/10396/14642
Versión del Editor
http://dx.doi.org/10.1016/j.eswa.2015.10.043
Collections
  • DIAN-Artículos, capítulos...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital