• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mapping of Olive Trees Using Pansharpened QuickBird Images: An Evaluation of Pixel- and Object-Based Analyses

Thumbnail
View/Open
agronomy-08-00288.pdf (998.0Kb)
Author
Castillejo-González, I.L.
Publisher
MDPI
Date
2018
Subject
Á Trous algorithm
Conservation agriculture
Crop inventory
Remote sensing
Spectralweight variations in fused images
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
This study sought to verify whether remote sensing offers the ability to efficiently delineate olive tree canopies using QuickBird (QB) satellite imagery. This paper compares four classification algorithms performed in pixel- and object-based analyses. To increase the spectral and spatial resolution of the standard QB image, three different pansharpened images were obtained based on variations in the weight of the red and near infrared bands. The results showed slight differences between classifiers. Maximum Likelihood algorithm yielded the highest results in pixel-based classifications with an average overall accuracy (OA) of 94.2%. In object-based analyses, Maximum Likelihood and Decision Tree classifiers offered the highest precisions with average OA of 95.3% and 96.6%, respectively. Between pixel- and object-based analyses no clear difference was observed, showing an increase of average OA values of approximately 1% for all classifiers except Decision Tree, which improved up to 4.5%. The alteration of the weight of different bands in the pansharpen process exhibited satisfactory results with a general performance improvement of up to 9% and 11% in pixel- and object-based analyses, respectively. Thus, object-based analyses with the DT algorithm and the pansharpened imagery with the near-infrared band altered would be highly recommended to obtain accurate maps for site-specific management.
URI
http://hdl.handle.net/10396/17924
Fuente
Agronomy 8(12), 288 (2018)
Versión del Editor
http://dx.doi.org/10.3390/agronomy8120288
Collections
  • DIGISIC-Artículos, capítulos...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital