Show simple item record

dc.contributor.advisorOlivares Bueno, Joaquín
dc.contributor.advisorGómez Luna, Juan
dc.contributor.authorZachariadis, Orestis
dc.date.accessioned2020-07-21T09:25:19Z
dc.date.available2020-07-21T09:25:19Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/10396/20318
dc.description.abstractThis doctoral thesis focuses on GPU acceleration of medical image registration and sparse general matrix-matrix multiplication (SpGEMM). The comprehensive work presented here aims to enable new possibilities in Image Guided Surgery (IGS). IGS provides the surgeon with advanced navigation tools during surgery. Image registration, which is a part of IGS, is computationally demanding, therefore GPU acceleration is greatly desirable. spGEMM, which is an essential part in many scientific and data analytics applications, e.g., graph applications, is also a useful tool in biomechanical modeling and sparse vessel network registration. We present this work in two parts. The first part of this thesis describes the optimization of the most demanding part of non-rigid Free Form Deformation registration, i.e., B-spline interpolation. Our novel optimization technique minimizes the data movement between processing cores and memory and maximizes the utilization of the very fast register file. In addition, our approach re-formulates B-spline interpolation to fully utilize Fused Multiply Accumulation instructions for additional benefits in performance and accuracy. Our optimized B-spline interpolation provides significant speedup to image registration. The second part describes the optimization of spGEMM. Hardware manufacturers, with the aim of increasing the performance of deep-learning, created specialized dense matrix multiplication units, called Tensor Core Units (TCUs). However, until now, no work takes advantage of TCUs for sparse matrix multiplication. With this work we provide the first TCU implementation of spGEMM and prove its benefits over conventional GPU spGEMM.es_ES
dc.description.abstractEsta tesis doctoral se centra en la aceleración por GPU del registro de imágenes médicas y la multiplicación de matrices dispersas (SpGEMM). El exhaustivo trabajo presentado aquí tiene como objetivo permitir nuevas posibilidades en la cirugía guiada por imagen (IGS). IGS proporciona al cirujano herramientas de navegación avanzadas durante la cirugía. El registro de imágenes, parte de IGS computacionalmente exigente, por lo tanto, la aceleración en GPU es muy deseable. spGEMM, la cual es una parte esencial en muchas aplicaciones científicas y de análisis de datos, por ejemplo, aplicaciones de gráficos, también es una herramienta útil en el modelado biomecánico y el registro de redes de vasos dispersos. Presentamos este trabajo en dos partes. La primera parte de esta tesis describe la optimización de la parte más exigente del registro de deformación de forma libre no rígida, es decir, la interpolación B-spline. Nuestra novedosa técnica de optimización minimiza el movimiento de datos entre los núcleos de procesamiento y la memoria y maximiza la utilización del archivo de registro rápido. Además, nuestro enfoque reformula la interpolación B-spline para utilizar completamente las instrucciones de multiplicación-acumulación fusionada (FMAC) para obtener beneficios adicionales en rendimiento y precisión. Nuestra interpolación B-spline optimizada proporciona una aceleración significativa en el registro de imágenes. La segunda parte describe la optimización de spGEMM. Los fabricantes de hardware, con el objetivo de aumentar el rendimiento del aprendizaje profundo, crearon unidades especializadas de multiplicación de matrices densas, llamadas Tensor Core Units (TCU). Sin embargo, hasta ahora, no se ha encontrado ningún trabajo aprovecha las TCU para la multiplicación de matrices dispersas. Con este trabajo, proporcionamos la primera implementación TCU de spGEMM y demostramos sus beneficios sobre la spGEMM convencional operada sobre dispositivos GPU.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherUniversidad de Córdoba, UCOPresses_ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.subjectGPUes_ES
dc.subjectMedical image registrationes_ES
dc.subjectSparse general matrix-matrix multiplicationes_ES
dc.subjectImage Guided Surgeryes_ES
dc.subjectB-spline interpolationes_ES
dc.subjectOptimizationes_ES
dc.subjectTensor Core Unitses_ES
dc.subjectLinear algebra
dc.titleHeterogeneous parallel computing for image registration and linear algebra applicationses_ES
dc.title.alternativeComputación paralela heterogénea en registro de imágenes y aplicaciones de álgebra lineales_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record