Characterization and Analysis of Anthocyanin-Related Genes in Wild-Type Blueberry and the Pink-Fruited Mutant Cultivar ‘Pink Lemonade’: New Insights into Anthocyanin Biosynthesis

View/ Open
Author
Die, Jose V.
Jones, Richard W.
Ogden, Elizabeth L.
Ehlenfeldt, Mark K.
Rowland, Lisa J.
Publisher
MDPIDate
2020Subject
AnthocyaninsBlueberry
Flavonoid
Fruit
MYB transcription factor
qPCR
METS:
Mostrar el registro METSPREMIS:
Mostrar el registro PREMISMetadata
Show full item recordAbstract
Blueberries are one of the richest sources of antioxidants, such as anthocyanins, among fruits and vegetables. Anthocyanin mutants, like the pink-fruited cultivar ‘Pink Lemonade’, are valuable resources for investigating anthocyanin biosynthesis in blueberries. In this study, we examined expression of flavonoid pathway genes during fruit development in wild-type, blue-fruited blueberries using quantitative real-time PCR. Expression was also compared between wild-type and the pink-fruited ‘Pink Lemonade’. This revealed significantly lower expression in ‘Pink Lemonade’ than in wild-type of nearly all the structural genes examined suggesting that a transcriptional regulator of the pathway was affected. Hence, we compared expression of three known regulatory genes and found that the gene encoding the transcription factor MYB1 was expressed at a significantly lower level in ‘Pink Lemonade’ than in the wild-type. To validate the capacity of this MYB1 to regulate the transcription of anthocyanin genes in blueberries, a transient expression assay was conducted. Results indicated MYB1 overexpression enhanced anthocyanin production. Comparative sequence analysis between wild-type and mutant MYB1 variants found differences in highly conserved features suggesting a mechanistic explanation for the mutant phenotype. Collectively, the results presented here contribute to a better understanding of mechanisms regulating anthocyanin biosynthesis in Vaccinium.