• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-Mining Methodology to Improve the Scientific Production Quality in Turkey Meat and Carcass Characterization Studies

Thumbnail
View/Open
animals-14-02107.pdf (656.1Kb)
Author
Salgado Pardo, José Ignacio
Navas González, Francisco Javier
González Ariza, Antonio
León Jurado, J.M.
Carolino, Nuno
Carolino, Inés
Delgado-Bermejo, J.V.
Camacho Vallejo, M.E.
Publisher
MDPI
Date
2024
Subject
Data-mining
Turkey meat quality
Physical traits
Chemical profile
Publication quality traits
Biostatistical tool
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
The present research aims to describe how turkey meat and carcass quality traits define the interest of the scientific community through the quality standards of journals in which studies are published. To this end, an analysis of 92 research documents addressing the study of turkey carcass and meat quality over the last 57 years was performed. Meat and carcass quality attributes were dependent variables and included traits related to carcass dressing, muscle fiber, pH, colorimetry, water-holding capacity, texture, and chemical composition. The independent variables comprised publication quality traits, including journal indexation, database, journal impact factor (JIF), quartile, publication area, and JIF percentage. For each dependent variable, a data-mining chi-squared automatic interaction detection (CHAID) decision tree was developed. Carcass or piece yield was the only variable that did not show an impact on the publication quality. Moreover, color and pH measurements taken at 72 h postmortem showed a negative impact on publication interest. On the other hand, variables including water-retaining attributes, colorimetry, pH, chemical composition, and shear force traits stood out among the quality-enhancing variables due to their low inclusion in papers, while high standards improved power.
URI
http://hdl.handle.net/10396/28871
Fuente
Salgado Pardo, J.I.; Navas González, F.J.; González Ariza, A.; León Jurado, J.M.; Carolino, N.; Carolino, I.; Delgado Bermejo, J.V.; Camacho Vallejo, M.E. Data-Mining Methodology to Improve the Scientific Production Quality in Turkey Meat and Carcass Characterization Studies. Animals 2024, 14, 2107.
Versión del Editor
https://doi.org/10.3390/ani14142107
Collections
  • DGen-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital