• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simultaneous short-term significant wave height and energy flux prediction using zonal multi-task evolutionary artificial neural networks

Thumbnail
View/Open
1-s2.0-S096014812101716X-main.pdf (1.594Mb)
Author
Gómez-Orellana, Antonio Manuel
Guijo-Rubio, David
Gutiérrez, P.A.
Hervás-Martínez, César
Publisher
Elsevier
Date
2021
Subject
Wave height prediction
Energy flux prediction
Marine energy
Multi-task machine learning
Zonal models
Evolutionary artificial neural networks
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
The prediction of wave height and flux of energy is essential for most ocean engineering applications. To simultaneously predict both wave parameters, this paper presents a novel approach using short-term time prediction horizons (6h and 12h). Specifically, the methodology proposed presents a twofold simultaneity: 1) both parameters are predicted by a single model, applying the multi-task learning paradigm, and 2) the prediction tasks are tackled for several neighbouring ocean buoys with such single model by the development of a zonal strategy. Multi-Task Evolutionary Artificial Neural Network (MTEANN) models are applied to two different zones located in the United States, considering measurements collected by three buoys in each zone. Zonal MTEANN models have been compared in a two-phased procedure: 1) against the three individual MTEANN models specifically trained for each buoy of the zone, and 2) against some state-of-the-art regression techniques. Results achieved show that the proposed zonal methodology obtains not only better performance than the individual MTEANN models, but it also requires a lower number of connections. Besides, the zonal MTEANN methodology outperforms state-of-the-art regression techniques. Hence, the proposed approach results in an excellent method for predicting both significant wave height and flux of energy at short-term prediction time horizons.
URI
http://hdl.handle.net/10396/29612
Fuente
Gómez-Orellana, A., Guijo-Rubio, D., Gutiérrez, P., & Hervás-Martínez, C. (2021). Simultaneous short-term significant wave height and energy flux prediction using zonal multi-task evolutionary artificial neural networks. Renewable Energy, 184, 975-989.
Versión del Editor
https://doi.org/10.1016/j.renene.2021.11.122
Collections
  • DIAN-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital