• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Ciencia de la Computación e Inteligencia Artificial
  • DIAN-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Ciencia de la Computación e Inteligencia Artificial
  • DIAN-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A method for outlier detection based on cluster analysis and visual expert criteria

Thumbnail
View/Open
A Method for Outlier Detection based on Cluster Analysis and Visual Expert Criteria.pdf (1.135Mb)
Author
Lara, Juan A.
Lizcano, David
Rampérez, Víctor
Soriano, Javier
Publisher
Wiley
Date
2019
Subject
Clustering
Data mining
KDD
Outlier detection
Visual expert criteria
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Outlier detection is an important problem occurring in a wide range of areas. Outliers are the outcome of fraudulent behaviour, mechanical faults, human error, or simply natural deviations. Many data mining applications perform outlier detection, often as a preliminary step in order to filter out outliers and build more representative models. In this paper, we propose an outlier detection method based on a clustering process. The aim behind the proposal outlined in this paper is to overcome the specificity of many existing outlier detection techniques that fail to take into account the inherent dispersion of domain objects. The outlier detection method is based on four criteria designed to represent how human beings (experts in each domain) visually identify outliers within a set of objects after analysing the clusters. This has an advantage over other clustering-based outlier detection techniques that are founded on a purely numerical analysis of clusters. Our proposal has been evaluated, with satisfactory results, on data (particularly time series) from two different domains: stabilometry, a branch of medicine studying balance-related functions in human beings and electroencephalography (EEG), a neurological exploration used to diagnose nervous system disorders. To validate the proposed method, we studied method outlier detection and efficiency in terms of runtime. The results of regression analyses confirm that our proposal is useful for detecting outlier data in different domains, with a false positive rate of less than 2% and a reliability greater than 99%.
URI
http://hdl.handle.net/10396/29650
Fuente
Lara, J. A., Lizcano, D., Rampérez, V., & Soriano, J. (2020). A method for outlier detection based on cluster analysis and visual expert criteria. Expert Systems, 37(5). https://doi.org/10.1111/exsy.12473
Versión del Editor
https://doi.org/10.1111/exsy.12473
Collections
  • Artículos, capítulos, libros...UCO
  • DIAN-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital