Show simple item record

dc.contributor.authorJiménez-Velasco, Isabel
dc.contributor.authorZafra-Palma, Jorge
dc.contributor.authorMuñoz-Salinas, Rafael
dc.contributor.authorMarín-Jiménez, M.J.
dc.date.accessioned2024-10-21T14:20:31Z
dc.date.available2024-10-21T14:20:31Z
dc.date.issued2024
dc.identifier.urihttp://hdl.handle.net/10396/29676
dc.description.abstractHuman interaction recognition (HIR) is a significant challenge in computer vision that focuses on identifying human interactions in images and videos. HIR presents a great complexity due to factors such as pose diversity, varying scene conditions, or the presence of multiple individuals. Recent research has explored different approaches to address it, with an increasing emphasis on human pose estimation. In this work, we propose Proxemics-Net++, an extension of the Proxemics-Net model, capable of addressing the problem of recognizing human interactions in images through two different tasks: the identification of the types of “touch codes” or proxemics and the identification of the type of social relationship between pairs. To achieve this, we use RGB and body pose information together with the state-of-the-art deep learning architecture, ConvNeXt, as the backbone. We performed an ablative analysis to understand how the combination of RGB and body pose information affects these two tasks. Experimental results show that body pose information contributes significantly to proxemic recognition (first task) as it allows to improve the existing state of the art, while its contribution in the classification of social relations (second task) is limited due to the ambiguity of labelling in this problem, resulting in RGB information being more influential in this task.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightshttps://creativecommons.org/licenses/by/4.0/es_ES
dc.sourceJiménez-Velasco, I., Zafra-Palma, J., Muñoz-Salinas, R., & Marín-Jiménez, M. J. (2024). Proxemics-net++: classification of human interactions in still images. Pattern Analysis And Applications, 27(2).es_ES
dc.subjectHuman interactionses_ES
dc.subjectProxemicses_ES
dc.subjectSocial relationses_ES
dc.subjectHuman pose estimationes_ES
dc.subjectDeep learninges_ES
dc.titleProxemics-net++: classification of human interactions in still imageses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s10044-024-01270-3es_ES
dc.relation.projectIDGobierno de España. Ministerio de Ciencia e Innovación. MCIN TED2021-129151B-I00/AEI/10.13039/ 501100011033/European Union NextGenerationEU/PRTRes_ES
dc.relation.projectIDGobierno de España. Ministerio de Economía, Industria y Competitividad. PID2019-103871GB-I00es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record