• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Ciencia de la Computación e Inteligencia Artificial
  • DIAN-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Ciencia de la Computación e Inteligencia Artificial
  • DIAN-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation

Thumbnail
View/Open
journal.pone.0252068.pdf (1.331Mb)
Author
Guijo-Rubio, David
Briceño Delgado, Francisco Javier
Gutiérrez-Peña, Pedro Antonio
Ayllón, Maria Dolores
Ciria, Rubén
Hervás-Martínez, César
Publisher
PLoS One
Date
2021
Subject
Donor-recipient matching
Machine learning algorithms
UNOS database
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Donor-Recipient (D-R) matching is one of the main challenges to be fulfilled nowadays. Due to the increasing number of recipients and the small amount of donors in liver transplantation, the allocation method is crucial. In this paper, to establish a fair comparison, the United Network for Organ Sharing database was used with 4 different end-points (3 months, and 1, 2 and 5 years), with a total of 39, 189 D-R pairs and 28 donor and recipient variables. Modelling techniques were divided into two groups: 1) classical statistical methods, including Logistic Regression (LR) and Naïve Bayes (NB), and 2) standard machine learning techniques, including Multilayer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB) or Support Vector Machines (SVM), among others. The methods were compared with standard scores, MELD, SOFT and BAR. For the 5-years end-point, LR (AUC = 0.654) outperformed several machine learning techniques, such as MLP (AUC = 0.599), GB (AUC = 0.600), SVM (AUC = 0.624) or RF (AUC = 0.644), among others. Moreover, LR also outperformed standard scores. The same pattern was reproduced for the others 3 end-points. Complex machine learning methods were not able to improve the performance of liver allocation, probably due to the implicit limitations associated to the collection process of the database.
URI
http://hdl.handle.net/10396/30965
Fuente
Guijo-Rubio, D., Briceño, J., Gutiérrez, P. A., Ayllón, M. D., Ciria, R., & Hervás-Martínez, C. (2021). Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation. PLoS One, 16(5), e0252068.
Versión del Editor
https://dx.doi.org/10.1371/journal.pone.0252068
Collections
  • Artículos, capítulos, libros...UCO
  • DIAN-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital