• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Ciencia de la Computación e Inteligencia Artificial
  • DIAN-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Ciencia de la Computación e Inteligencia Artificial
  • DIAN-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Short- and long-term energy flux prediction using Multi-Task Evolutionary Artificial Neural Networks

Thumbnail
View/Open
Manuscript.pdf (1.525Mb)
Author
Guijo-Rubio, David
Gómez-Orellana, Antonio Manuel
Gutiérrez-Peña, Pedro Antonio
Hervás-Martínez, César
Publisher
Elsevier
Date
2020
Subject
Wave energy flux prediction
Marine energy
Multi-task machine learning
Evolutionary artificial neural networks
Reanalysis data
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
This paper presents a novel approach to tackle simultaneously short- and long-term energy flux prediction (specifically, at 6h, 12h, 24h, and 48h time horizons). The methodology proposed is based on the Multi-Task Learning paradigm in order to solve the four problems with a single model. We consider Multi-Task Evolutionary Artificial Neural Networks (MTEANN) with four outputs, one for each time prediction horizon. For this purpose, three buoys located at the Gulf of Alaska are considered. Measurements collected by these buoys are used to obtain the target values of energy flux, whereas, only reanalysis data are used as input values, allowing the applicability to other locations. The performance of three different basis functions (Sigmoidal Unit, Radial Basis Function and Product Unit) are compared against some popular state-of-the-art approaches such as Extreme Learning Machines and Support Vector Regressors. The results show that MTEANN methodology using Sigmoidal Units in the hidden layer and a linear output achieves the best performance. In this way, the multi-task methodology is an excellent and lower-complexity approach for energy flux prediction at both short- and long-term prediction time horizons. Furthermore, the results also confirm that reanalysis data is enough for describing well the problem tackled.
URI
http://hdl.handle.net/10396/30966
Fuente
Guijo-Rubio, D., Gómez-Orellana, A. M., Gutiérrez, P. A., & Hervás-Martínez, C. (2020). Short-and long-term energy flux prediction using Multi-Task Evolutionary Artificial Neural Networks. Ocean Engineering, 216, 108089.
Versión del Editor
https://dx.doi.org/10.1016/j.oceaneng.2020.108089
Collections
  • DIAN-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital