Show simple item record

dc.contributor.authorGómez-Orellana, Antonio Manuel
dc.contributor.authorGuijo-Rubio, David
dc.contributor.authorGutiérrez, Pedro A.
dc.contributor.authorHervás-Martínez, César
dc.contributor.authorVargas-Yun, Víctor
dc.date.accessioned2025-01-14T13:18:47Z
dc.date.available2025-01-14T13:18:47Z
dc.date.issued2024
dc.identifier.issn1873-6769
dc.identifier.urihttp://hdl.handle.net/10396/31006
dc.description.abstractIn this paper we present a novel methodology, referenced as ORFEO (Ordinal classifier and Regressor Fusion for Estimating an Ordinal categorical target), to enhance the performance in ordinal classification problems for which the latent variable is observable. ORFEO is an artificial neural network model incorporating two outputs, one for ordinal classification, using the cumulative link model, and one for regression, using a linear model. Both outputs are simultaneously optimised considering a loss function that linearly combines both classification and regression losses. The main motivation behind developing the proposed approach is to enhance the performance of a standard ordinal classifier. This improvement is facilitated by considering the regression output, which allows the model to differentiate between patterns within the same category. The ORFEO model is applied to two problems in the field of marine and ocean engineering: short-term prediction of both significant wave height and flux of energy. Both problems are addressed considering four different coastal zones of the United States of America, using 13 datasets formed by buoys measurements and reanalysis data. A comprehensive comparison against 20 methodologies, including regression and nominal/ordinal classification approaches is performed, by using diverse nominal and ordinal performance metrics. Ranks achieved indicate that ORFEO outperforms all the compared methodologies in terms of all the performance measures, demonstrating the efficacy and robustness of the proposal. Finally, a statistical analysis is conducted, concluding that there are statistically significant differences across ordinal and nominal performance metrics in favour of the proposed ORFEO model.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/es_ES
dc.sourceA.M. Gómez-Orellana, D. Guijo-Rubio, P.A. Gutiérrez, C. Hervás-Martínez y V.M. Vargas. "ORFEO: Ordinal classifier and Regressor Fusion for Estimating an Ordinal categorical target", Engineering Applications of Artificial Intelligence, Vol. 133(E), July, 2024, pp. 108462.es_ES
dc.subjectOrdinal classificationes_ES
dc.subjectNeural networkses_ES
dc.subjectCumulative link modelses_ES
dc.subjectShort-term predictiones_ES
dc.subjectSignificant wave heightes_ES
dc.subjectFlux of energyes_ES
dc.subjectLoss functionses_ES
dc.titleORFEO: Ordinal classifier and Regressor Fusion for Estimating an Ordinal categorical targetes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttp://doi.org/10.1016/j.engappai.2024.108462es_ES
dc.relation.projectIDGobierno de España.PID2020-115454GB-C22/AEI /10.13039/501100011033es_ES
dc.relation.projectIDJunta de Andalucía.PREDOC-00489es_ES
dc.relation.projectIDGobierno de España.MCIU/AEI/10.13039/501100011033es_ES
dc.relation.projectIDGobierno de España.JDC2022-048378-Ies_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record