• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Partial random under/oversampling for multilabel problems

Thumbnail
View/Open
1-s2.0-S0950705124009894-main.pdf (5.386Mb)
Author
García Pedrajas, Nicolás
Publisher
Elsevier
Date
2024
Subject
Multilabel learning
Class imbalance
Partial undersampling
Partial oversampling
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Many current data mining applications address problems with instances that belong to more than one class. The term multilabel classification has been introduced as a way of describing this task. Advantageously using the correlation among the labels can provide better performance than methods that manage each label separately. One of the major challenges in multilabel datasets is the class-imbalance problem. In most cases, several or many of the labels are sparsely populated, producing heavily imbalanced datasets. Standard methods used for single-label class-imbalanced datasets are not easily applicable due to the lack of a proper concept of minority instance in the multilabel case. In this paper, we propose a new approach based on partial undersampling and/or oversampling of the instances that is more suitable for the multilabel case. The method modifies the concept of undersampling and oversampling to implement partial undersampling/oversampling of instances. In a large set of 55 real-world multilabel problems, our approach improves the results of current methods for dealing with class-imbalanced datasets in multilabel problems.
URI
http://hdl.handle.net/10396/31301
Fuente
García-Pedrajas, N. (2024). Partial random under/oversampling for multilabel problems. Knowledge-Based Systems, 302, 112355.
Versión del Editor
https://doi.org/10.1016/j.knosys.2024.112355
Collections
  • DIAN-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital