Nano-depletion of acrosome-damaged donkey sperm by using lectin peanut agglutinin (PNA)-magnetic nanoparticles
Author
Yousef, M.S.
López-Lorente, A.I.
Díaz-Jiménez, María
Consuegra, César
Dorado, Jesús
Pereira, Blasa
Ortiz, I.
Cárdenas, Soledad
Hidalgo, Manuel
Publisher
ElsevierDate
2020Subject
SpermLectin
Nanopurification
Nanoparticles
Acrosome
METS:
Mostrar el registro METSPREMIS:
Mostrar el registro PREMISMetadata
Show full item recordAbstract
Lectin is considered as a suitable biomarker for nano-depletion of acrosome-damaged sperm. The aim of this study was to synthetize magnetic nanoparticles (MNPs) coated by peanut (Arachis hypogaea) agglutinin lectin (PNA) and investigate its beneficial effect in improving of sperm characteristics. MNPs were obtained by co-precipitation method, functionalized with chitosan and coated by PNA at a concentration of 0.04 mg/mL. Semen was frozen either with glycerol-based or sucrose-based extenders. Frozen-thawed straws from five donkeys (three ejaculates per donkey) were incubated with lectin-MNPs (2 mg/mL), and then exposed to an external magnet enabling the non-bound sperm to be collected as nanopurified sperm. Sperm were evaluated post-thawing (control) and after nanopurification for motility, plasma membrane integrity, acrosome integrity, morphology, DNA fragmentation and concentration. The statistical analyses were extended to investigate the correlation between the initial quality of the frozen-thawed semen samples and the effect of nanopurification after thawing. The obtained MNPs were biocompatible to the sperm and significantly improved the progressive motility (P < 0.05) for the glycerol nanopurified group (43.08 ± 3.52%) in comparison to control (33.70 ± 2.64%). Acrosome-damaged sperm were reduced (P < 0.05) in both nanopurified groups (19.92 ± 2.69 for G and 21.57 ± 2.77 for S) in comparison to control (36.07 ± 3.82 for G and 35.35 ± 3.88 for S). There were no significant changes in sperm morphology and membrane integrity after nanopurification. The average sperm recovery after nanopurification was 80.1%. Sperm quality index was significantly higher (P < 0.001) in nanopurified groups regardless of the initial quality of the frozen thawed semen samples. However, in the high sperm quality group, nanopurification significantly improved the progressive motility and membrane integrity besides the increasing of acrosome-intact sperm. Sperm nanopurification using lectin-magnetic nanoparticles can be considered as a suitable method to reduce the proportion of acrosome-damaged sperm and to increase the quality of frozen thawed donkey semen.