Is spatial structure the key to promote plant diversity in Mediterranean forest plantations?
Author
González-Moreno, Pablo
Quero, José Luis
Pooerter, Lourens
Bonet, Francisco Javier
Zamora, Regino
Publisher
ElsevierDate
2011Subject
landscape ecologyfragmentation
pine plantations
sierra nevada
METS:
Mostrar el registro METSPREMIS:
Mostrar el registro PREMISMetadata
Show full item recordAbstract
Mediterranean forest plantations are currently under an intense debate related to their ecological function, sustainability and future performance. In several Mediterranean countries, efforts are directed to convert pine plantations into mixed and more diverse forests. This research aims to evaluate the effect of the spatial configuration of pine plantations on regeneration and plant diversity in order to facilitate plantation management towards more diversified stands. Spatial characteristics of plantations (proximity to different vegetation types, fragmentation and internal patch structure) were related to abundance of seedlings of an ecologically important broadleaved species, Holm Oak (Quercus ilex L.), and the Shannon diversity index of the community. Q. ilex seedling abundance and plant diversity in pine plantation patches are favoured by the proximity to oak patches located uphill. Fragmentation affected only plant diversity, with smaller patches having more diversity. The internal structure of the pine patch influenced both regeneration of Q. ilex and diversity. Pine patches with lower pine tree density were characterized by higher diversity and less Q. ilex regeneration confirming that internal structure affects species differently. From a management perspective, the process of conversion of Mediterranean pine plantations to mixed oak–pine forests could be facilitated by (1) having the seed source uphill from the plantation, (2) increasing the fragmentation of plantations and (3) promoting the internal heterogeneity of plantations to create a diverse range of light environments matching the different requirements of species.