• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Software Integration of Power System Measurement Devices with AI Capabilities

Thumbnail
View/Open
applsci-15-00170-v2.pdf (6.194Mb)
Author
Arenas Ramos, Victoria
Cuesta Rojo, Federico
Pallarés López, Víctor
Santiago, Isabel
Publisher
MDPI
Date
2025
Subject
Power quality monitor
Phasor measurement unit
Smart meter
Open-source software
Distributed measurement system
Photovoltaic plant
Load identification
Artificial intelligence
Neural network
Decision tree
Random forest
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
The latest changes on the distribution network due to the presence of distributed energy resources (DERs) and electric vehicles make it necessary to monitor the grid using a real-time high-precision system. The present work centers on the development of an open-source software platform that allows for the joint management of, at least, power quality monitors (PQMs), phasor measurement units (PMUs), and smart meters (SMs), which are three of the most widespread devices on distribution networks. This framework could work remotely while allowing access to the measurements in a comfortable way for grid analysis, prediction, or control tasks. The platform must meet the requirements of synchronism and scalability needed when working with electrical monitoring devices while considering the large volumes of data that these devices generate. The framework has been experimentally validated in laboratory and field tests in two photovoltaic plants. Moreover, real-time Artificial Intelligence capabilities have been validated by implementing three Machine Learning classifiers (Neural Network, Decision Tree, and Random Forest) to distinguish between three different loads in real time.
URI
http://hdl.handle.net/10396/33132
Fuente
Arenas-Ramos, V., Cuesta, F., Pallares-Lopez, V., & Santiago, I. (2024). Software Integration of Power System Measurement Devices with AI Capabilities. Applied Sciences, 15(1), 170. https://doi.org/10.3390/app15010170
Versión del Editor
https://doi.org/10.3390/app15010170
Collections
  • DACETE-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital