• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Ingeniería Gráfica y Geomática
  • DIGISIC-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Ingeniería Gráfica y Geomática
  • DIGISIC-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convolutional Neural Networks for Planting System Detection of Olive Groves

Thumbnail
View/Open
convolutional_neural_networks (1.227Mb)
Author
Martínez‐Ruedas, Cristina
Yanes-Luis, Samuel
Díaz Cabrera, Juan Manuel
Gutiérrez-Reina, Daniel
Perez Galvín, Adela
Castillejo-González, I.L.
Publisher
Springer Nature
Date
2023
Subject
Canopy
Convolutional Neural Network (CNN)
Deep learning
Fraction Canopy Cover (FCC)
Image classification
Olive patterns
Planting system
Remote sensing
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
The present chapter is focused on the identification of different planting systems in olive groves by using very high-resolution aerial orthophotographs through Deep Learning Convolutional Neural Networks techniques. Thus, the DL network proposed classified and discriminated accurately the traditional, intensive and super-intensive management systems. As a starting point in the process, a mini-crop level analysis was performed. To increase the number of standardized samples of the Data Training, a segmentation technique was used to divide the crop images into sub-images (mini-crops), considering different thresholds and stride sizes. These sub-images were discriminated efficiently with accuracies higher than 0.8, showing the biggest image (H = 120 px, W = 120 px) the highest average accuracy (0.957). The super-intensive and traditional managements displayed the most accurate classifications for most of the sub-image sizes. However, major difficulties were found when trying to discriminate intensive systems, with a high degree of confusion with traditional management. Finally, a farm level analysis was also carried out to predict the planting pattern of the entire plantation by identifying the most frequent class of its sub-images. Slightly lower results were observed at farm level, were the image size H = 80 px, W = 80 px obtained the highest accuracy value of 0.826.
URI
http://hdl.handle.net/10396/33697
Fuente
Martínez-Ruedas, C., Yanes Luis, S., Díaz-Cabrera, J.M., Gutiérrez Reina, D., Galvín, A.P., Castillejo-González, I.L. (2023). Convolutional Neural Networks for Planting System Detection of Olive Groves. In: Rivera, G., Rosete, A., Dorronsoro, B., Rangel-Valdez, N. (eds) Innovations in Machine and Deep Learning. Studies in Big Data, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-031-40688-1_17
Versión del Editor
https://doi.org/10.1007/978-3-031-40688-1_17
Collections
  • DIR-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO
  • DACETE-Artículos, capítulos, libros...
  • DIGISIC-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital