• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Ingenieria Electrónica y de Computadores
  • DACETE-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Ingenieria Electrónica y de Computadores
  • DACETE-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An approximation to solve regression problems with a genetic fuzzy rule ordinal algorithm

Thumbnail
View/Open
an_approximation_to_solve_regression_problems (626.1Kb)
Author
Gámez-Granados, Juan Carlos
García, David
González, Antonio
Pérez, Raúl
Publisher
Elsevier
Date
2019
Subject
Regression
Ordinal classification
Genetic algorithms
Fuzzy rules
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Regression problems try estimating a continuous variable from a number of characteristics or predictors. Several proposals have been made for regression models based on the use of fuzzy rules; however, all these proposals make use of rule models in which the irrelevance of the input variables in relation to the variable to be approximated is not taken into account. Regression problems share with the ordinal classification the existence of an explicit relationship of order between the values of the variable to be predicted. In a recent paper, the authors have proposed an ordinal classification algorithm that takes into account the detection of the irrelevance of input variables. This algorithm extracts a set of fuzzy rules from an example set, using as the basic model a sequential covering strategy along with a genetic algorithm. In this paper, a proposal for a regression algorithm based on this ordinal classification algorithm is presented. The proposed model can be interpreted as a multiclassifier and multilevel system that learns at each stage using the knowledge gained in previous stages. Due to similarities between regression and ordinal problems as well as the use of a set of ordinal algorithms, an error interval can be returned with the regression output value. Experimental results show the good behavior of the proposal as well as the results of the error interval.
URI
http://hdl.handle.net/10396/33706
Fuente
Gámez, J. C., García, D., González, A., & Pérez, R. (2019). An approximation to solve regression problems with a genetic fuzzy rule ordinal algorithm. Applied Soft Computing, 78, 13-28. https://doi.org/10.1016/j.asoc.2019.02.012
Versión del Editor
https://doi.org/10.1016/j.asoc.2019.02.012
Collections
  • Artículos, capítulos, libros...UCO
  • DACETE-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital