• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Ingenieria Electrónica y de Computadores
  • DACETE-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Ingenieria Electrónica y de Computadores
  • DACETE-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An interpretability improvement for fuzzy rule bases obtained by the iterative rule learning approach

Thumbnail
View/Open
an_interpretability_improvement_for_fuzzy_rule (639.0Kb)
Author
García, David
Gámez-Granados, Juan Carlos
González, Antonio
Pérez, Raúl
Publisher
Elsevier
Date
2015
Subject
Fuzzy rule modeling
Interpretability
Complexity reduction
Genetic algorithms
Classification problems
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Interpretability is one of the key concepts in many of the applications using the fuzzy rule-based approach. It is well known that there are many different criteria around this concept, the complexity being one of them. In this paper, we focus our efforts in reducing the complexity of the fuzzy rule sets. One of the most interesting approaches for learning fuzzy rules is the iterative rule learning approach. It is mainly characterized by obtaining rules covering few examples in final stages, being in most cases useless to represent the knowledge. This behavior is due to the specificity of the extracted rules, which eventually creates more complex set of rules. Thus, we propose a modified version of the iterative rule learning algorithm in order to extract simple rules relaxing this natural trend. The main idea is to change the rule extraction process to be able to obtain more general rules, using pruned searching spaces together with a knowledge simplification scheme able to replace learned rules. The experimental results prove that this purpose is achieved. The new proposal reduces the complexity at both, the rule and rule base levels, maintaining the accuracy regarding to previous versions of the algorithm.
URI
http://hdl.handle.net/10396/33721
Fuente
García, D., Gámez, J. C., González, A., & Pérez, R. (2015). An interpretability improvement for fuzzy rule bases obtained by the iterative rule learning approach. International Journal Of Approximate Reasoning, 67, 37-58. https://doi.org/10.1016/j.ijar.2015.09.001
Versión del Editor
https://doi.org/10.1016/j.ijar.2015.09.001
Collections
  • Artículos, capítulos, libros...UCO
  • DACETE-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital