• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mining Local Periodic Patterns in a Discrete Sequence

Thumbnail
View/Open
2020_Local_Periodic_Patterns_Ventura.pdf (4.664Mb)
Author
Fournier-Viger, Philippe
Yang, Peng
Kiran, Rage Uday
Ventura Soto, S.
Luna, J.M.
Publisher
Elsevier
Date
2021
Subject
Periodic pattern
Itemset
Time-interval
Periodicity
Local pattern
Sequence
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Periodic frequent patterns are sets of events or items that periodically appear in a sequence of events or transactions. Many algorithms have been designed to identify periodic frequent patterns in data. However, most assume that the periodic behavior of a pattern does not change much over time. To address this limitation, this paper proposes to discover a novel type of periodic patterns in a sequence of events or transactions, called Local Periodic Patterns (LPPs) which are patterns (sets of events) that have a periodic behavior in some non prede ned time-intervals. A pattern is said to be a local periodic pattern if it appears regularly and continuously in some time-interval(s). Two novel measures are proposed to assess the periodicity and frequency of patterns in time-intervals. The maxSoPer (maximal period of spillovers) measure allows detecting time-intervals of variable lengths where a pattern is continuously periodic, while the minDur (minimal duration) measure ensures that those time-intervals have a minimum duration. To discover all LPPs, the paper presents three e cient algorithms. An experimental evaluation on real datasets shows that the proposed algorithms are e cient and can provide useful patterns that cannot be found using traditional periodic pattern mining algorithms.
URI
http://hdl.handle.net/10396/33733
Fuente
Fournier-Viger, P., Yang, P., Kiran, R. U., Ventura, S., & Luna, J. M. (2020). Mining local periodic patterns in a discrete sequence. Information Sciences, 544, 519-548. https://doi.org/10.1016/j.ins.2020.09.044
Versión del Editor
https://doi.org/10.1016/j.ins.2020.09.044
Collections
  • DIAN-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital