• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Botánica, Ecología y Fisiología Vegetal
  • DBEFV-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Botánica, Ecología y Fisiología Vegetal
  • DBEFV-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Montrends: A Google Earth engine application for analysing species’ habitat suitability over time

Thumbnail
View/Open
montrends (4.627Mb)
Author
Alírio, João
Garcia, Nuno
Campos, João C.
Arenas Castro, Salvador
Pôças, Isabel
Duarte, Lia B.
Teodoro, Ana C.
Sillero, Neftalí
Publisher
Elsevier
Date
2025
Subject
Ecological niche models
GEE
Habitat suitability trends
MaxEnt
Protected areas
Remote sensing
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Human activities are impacting biodiversity worldwide. Biodiversity monitoring is essential to assess and support conservation status and trends. Remote sensing has played a crucial role in supporting biodiversity monitoring, but more intuitive and fast-processing tools are still required to improve biodiversity conservation. Herein, we present a Google Earth Engine (GEE) App called Montreds, which implements a biodiversity monitoring tool to measure trends in species habitat suitability over time by calculating ecological niche models (ENMs) with a time series of satellite products. The application is specific to Montesinho Natural Park/Nogueira Special Conservation Area, a protected area located in northeastern Portugal. The application calculates ENMs over time with MaxEnt for five taxa (vascular plants, amphibians, reptiles, birds, and mammals), using a time series of six Moderate-Resolution Imaging Spectroradiometer (MODIS) products between 2001 and 2023. Habitat suitability trends are estimated using the Mann-Kendall test. The Montrends' main output is a map for each modelled species with positive, negative, or null trends over time. If habitat suitability decreases monotonically over time, the trend is identified as negative. The application allows the users to select the species to be modelled, the temporal period, the number of model replicates, and the proportion of training and test records. The application runs the analyses intuitively in about a minute. Several results are displayed: the mean MaxEnt model over time and the Mann-Kendall trends for the whole study area, the species presences, the pixels with significant trends, and the species' occurrences in significant pixels. The application also provides the main MaxEnt outputs, including Area Under the Curve (AUC) values and variable contributions, plots of the global contributions of predictor variables over time, average trend values, and information on MaxEnt parameters. Decision-makers and conservation planners can use this application as a complementary tool for biodiversity monitoring and conservation.
URI
http://hdl.handle.net/10396/33762
Fuente
Alírio, J., Garcia, N., Campos, J. C., Arenas-Castro, S., Pôças, I., Duarte, L. B., Teodoro, A. C., & Sillero, N. (2025). Montrends: A Google Earth engine application for analysing species’ habitat suitability over time. Ecological Informatics, 103201. https://doi.org/10.1016/j.ecoinf.2025.103201
Versión del Editor
https://doi.org/10.1016/j.ecoinf.2025.103201
Collections
  • Artículos, capítulos, libros...UCO
  • DBEFV-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital