• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Botánica, Ecología y Fisiología Vegetal
  • DBEFV-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Botánica, Ecología y Fisiología Vegetal
  • DBEFV-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model-Assisted Bird Monitoring Based on Remotely Sensed Ecosystem Functioning and Atlas Data

Thumbnail
View/Open
model-assisted_bird_monitoring (3.423Mb)
Author
Regos, Adrián
Gómez-Rodríguez, Pablo
Arenas Castro, Salvador
Tapia, Luis
Vidal, María
Domínguez, Jesús
Publisher
MDPI
Date
2020
Subject
IUCN conservation status
Land-surface temperature
Life-history traits
Remotely sensed essential biodiversity variables (RS-EBVs)
Surface energy balance and temperature
Vegetation productivity
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Urgent action needs to be taken to halt global biodiversity crisis. To be effective in the implementation of such action, managers and policy-makers need updated information on the status and trends of biodiversity. Here, we test the ability of remotely sensed ecosystem functioning attributes (EFAs) to predict the distribution of 73 bird species with different life-history traits. We run ensemble species distribution models (SDMs) trained with bird atlas data and 12 EFAs describing different dimensions of carbon cycle and surface energy balance. Our ensemble SDMs—exclusively based on EFAs—hold a high predictive capacity across 71 target species (up to 0.94 and 0.79 of Area Under the ROC curve and true skill statistic (TSS)). Our results showed the life-history traits did not significantly affect SDM performance. Overall, minimum Enhanced Vegetation Index (EVI) and maximum Albedo values (descriptors of primary productivity and energy balance) were the most important predictors across our bird community. Our approach leverages the existing atlas data and provides an alternative method to monitor inter-annual bird habitat dynamics from space in the absence of long-term biodiversity monitoring schemes. This study illustrates the great potential that satellite remote sensing can contribute to the Aichi Biodiversity Targets and to the Essential Biodiversity Variables framework (EBV class “Species distribution”).
URI
http://hdl.handle.net/10396/33773
Fuente
Regos, A., Gómez-Rodríguez, P., Arenas-Castro, S., Tapia, L., Vidal, M., & Domínguez, J. (2020). Model-Assisted Bird Monitoring Based on Remotely Sensed Ecosystem Functioning and Atlas Data. Remote Sensing, 12(16), 2549. https://doi.org/10.3390/rs12162549
Versión del Editor
https://doi.org/10.3390/rs12162549
Collections
  • Artículos, capítulos, libros...UCO
  • DBEFV-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital