• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Ciencia de la Computación e Inteligencia Artificial
  • DIAN-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Ciencia de la Computación e Inteligencia Artificial
  • DIAN-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Autoencoder-based flow-analogue probabilistic reconstruction of heat waves from pressure fields

Thumbnail
View/Open
autoencoder-based_flow-analogue_probabilistic_reconstruction (2.700Mb)
Author
Pérez-Aracil, Jorge
Marina, Cosmin M.
Zorita, Eduardo
Barriopedro, David
Zaninelli, Pablo
Giuliani, Matteo
Castelletti, Andrea
Gutiérrez, P.A.
Salcedo-Sanz, Sancho
Publisher
Wiley
Date
2024
Subject
Analogue method
Autoencoders
Field reconstruction
Heat waves
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
This paper presents a novel hybrid approach for the probabilistic reconstruction of meteorological fields based on the combined use of the analogue method (AM) and deep autoencoders (AEs). The AE–AM algorithm trains a deep AE in the predictor fields, which the encoder filters towards a compressed space of reduced dimensionality. The AM is then applied in this latent space to find similar situations (analogues) in the historical record, from which the target field can be reconstructed. The AE–AM is compared to the classical AM, in which flow analogues are explicitly searched in the fully resolved field of the predictor, which may contain useless information for the reconstruction. We evaluate the performance of these two approaches in reconstructing the daily maximum temperature (target) from sea-level pressure fields (predictor) recorded during eight major European heat waves of the 1950–2010 period. We show that the proposed AE–AM approach outperforms the standard AM algorithm in reconstructing the magnitude and spatial pattern of the considered heat wave events. The improvement ranges from 7% to 22% in skill score, depending on the heat wave analyzed, demonstrating the potential added value of the hybrid method.
Description
Datos de investigación disponibles en: .- Code: https://github.com/GheodeAI/va_am .- Documentation: https://va-am.readthedocs.io/en/latest/ .- Data (ERA5 Reanalysis): https://cds.climate.copernicus.eu/
URI
http://hdl.handle.net/10396/33795
Fuente
Pérez‐Aracil, J., Marina, C. M., Zorita, E., Barriopedro, D., Zaninelli, P., Giuliani, M., Castelletti, A., Gutiérrez, P. A., & Salcedo‐Sanz, S. (2024). Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields. Annals Of The New York Academy Of Sciences, 1541(1), 230-242. https://doi.org/10.1111/nyas.15243
Versión del Editor
http://dx.doi.org/10.1111/nyas.15243
Collections
  • Artículos, capítulos, libros...UCO
  • DIAN-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital