• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation

Thumbnail
View/Open
peerj-cs-1402(1).pdf (7.801Mb)
Author
Barreiro, José M.
Lara, Juan A.
Manrique, Daniel
Smith, Peter
Publisher
PeerJ
Date
2023
Subject
Cyber-physical systems
Reinforcement learning
Knowledge portability
Drones
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
In the field of artificial intelligence (AI) one of the main challenges today is to make the knowledge acquired when performing a certain task in a given scenario applicable to similar yet different tasks to be performed with a certain degree of precision in other environments. This idea of knowledge portability is of great use in Cyber-Physical Systems (CPS) that face important challenges in terms of reliability and autonomy. This article presents a CPS where unmanned vehicles (drones) are equipped with a reinforcement learning system so they may automatically learn to perform various navigation tasks in environments with physical obstacles. The implemented system is capable of isolating the agents' knowledge and transferring it to other agents that do not have prior knowledge of their environment so they may successfully navigate environments with obstacles. A complete study has been performed to ascertain the degree to which the knowledge obtained by an agent in a scenario may be successfully transferred to other agents in order to perform tasks in other scenarios without prior knowledge of the same, obtaining positive results in terms of the success rate and learning time required to complete the task set in each case. In particular, those two indicators showed better results (higher success rate and lower learning time) with our proposal compared to the baseline in 47 out of the 60 tests conducted (78.3%).
URI
http://hdl.handle.net/10396/33798
Fuente
Barreiro JM, Lara JA, Manrique D, Smith P. 2023. Towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation. PeerJ Comput. Sci. 9:e1402
Versión del Editor
http://doi.org/10.7717/peerj-cs.1402
Collections
  • DIAN-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital