• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Ciencia de la Computación e Inteligencia Artificial
  • DIAN-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Ciencia de la Computación e Inteligencia Artificial
  • DIAN-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A probabilistic alert system for extreme wind events prediction using quantile regression ensembles

Thumbnail
View/Open
a_probabilistic_alert_system_for_extreme_wind_events (2.873Mb)
Author
Peláez-Rodríguez, César
Pérez-Aracil, Jorge
Cruz de la Torre, Carlos
Cornejo-Bueno, Laura
Prieto-Godino, Luis
Alexandre-Cortizo, Enrique
Salcedo-Sanz, Sancho
Publisher
Elsevier
Date
2026
Subject
Extreme wind speed events
Quantile regression
Kernel density estimation
Probabilistic alert
Isotonic regression
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Anticipating and mitigating the impact of extreme wind events is increasingly critical as wind power becomes a central component of modern energy systems. However, existing predictive approaches often struggle to capture the uncertainty and variability inherent in wind data, limiting their effectiveness in risk management. This research aims to develop a probabilistic alert system to predict the occurrence of such extreme events effectively. To achieve this, a novel framework is proposed, combining quantile regression and kernel density estimation, to construct a robust predictive ensemble system. By integrating individual quantile regression predictions across multiple quantiles, the proposed framework captures the inherent variability and uncertainty of wind data. Additionally, the ensemble model’s probabilistic outputs are calibrated using isotonic regression, yielding refined distributions that closely align with observed extreme event occurrence rates. The framework was validated using real-world data from a wind farm in Spain, showing substantial improvements over conventional probabilistic binary classifiers in both accuracy and calibration of extreme event probabilities. These findings highlight the potential of the proposed system to enhance operational decision-making and resilience in wind power infrastructure under extreme weather conditions.
URI
http://hdl.handle.net/10396/33799
Fuente
Peláez-Rodríguez, C., Pérez-Aracil, J., De la Torre, C. C., Cornejo-Bueno, L., Prieto-Godino, L., Alexandre-Cortizo, E., & Salcedo-Sanz, S. (2026). A probabilistic alert system for extreme wind events prediction using quantile regression ensembles. Energy Conversion And Management, 347, 120545. https://doi.org/10.1016/j.enconman.2025.120545
Versión del Editor
https://doi.org/10.1016/j.enconman.2025.120545
Collections
  • Artículos, capítulos, libros...UCO
  • DIAN-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital