• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rapid Quantification of Phenolic Compounds in Virgin Olive Oil Using Near-Infrared Spectroscopy: A Tool for Breeding and Quality Assessment

Thumbnail
View/Open
Embargado hasta 20/03/2026 (1.087Mb)
Author
Yılmaz-Düzyaman, Hande
Rosa Navarro, Raúl de la
Pérez, Ana G.
Sanz, Carlos
Núñez-Sánchez, Nieves
León, Lorenzo
Publisher
Elsevier
Date
2025
Subject
VOO
FT-NIRS
Phenols
PLS
Heritability
Breeding
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Phenolic compounds play a key role in virgin olive oil (VOO), affecting both sensory quality and health-promoting properties. Their content and composition are crucial for nutritional evaluation and for characterizing new cultivars in breeding programs. Although high-performance liquid chromatography (HPLC) is the standard method for phenolic analysis, it is laborious, time-consuming, and impractical for the large sample numbers required in genetic studies. Near-infrared spectroscopy (NIRS) offers a fast, non-destructive alternative, yet its use for VOO phenolic profiling remains limited. A comprehensive three-year dataset with broad genetic and environmental variability was assembled to calibrate NIRS models. A subdataset, collected during the same period from four cultivars grown in high-density hedgerow systems across four environments, was reserved for external validation and for estimating broad-sense heritability (H²). To enhance the variability of the calibration set, a core subset from the world germplasm collection was also included. NIRS spectra were acquired using an FT-NIR MPA instrument (1100–2200 nm). Partial Least Squares (PLS) models demonstrated the best predictive performance for oleocanthal, oleacein, and oleuropein aglycone, with high coefficients of determination (R²). Oleocanthal and oleuropein aglycone achieved residual predictive deviation (RPD) ≥2.5 and range error ratio (RER) >10, while oleacein and ligstroside aglycone also performed well (RPD = 2.49 and 1.71; RER = 9.03 and 7.75, respectively). Variance component analysis revealed that genotype was the main contributor to ligstroside aglycone variance, whereas environment dominated for oleuropein aglycone, oleacein, and oleocanthal. The highest broad-sense heritability (H²) values were found for ligstroside and oleuropein aglycones, and the lowest for oleocanthal. These findings demonstrate that FT-NIR MPA spectroscopy is a powerful, high-throughput tool for predicting VOO phenolic composition in breeding programs.
Description
Embargado hasta 20/03/2026.
URI
http://hdl.handle.net/10396/33824
Collections
  • DPA-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital