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RESUMEN 
En este artículo se introduce una estrategia para contrastar la raíz unitaria en los 
procesos AR(1) con término constante donde el valor inicial es una constante conocida. 
En este contexto el test tradicional de Dickey-Fuller es no similar, siendo el término 
constante el parámetro molesto. La estrategia de contraste que proponemos tiene en 
cuenta la citada no similaridad. Concretamente, se trata de un test bilateral de la 
hipótesis de paseo aleatorio poco usual, pues la región de aceptación se construye 
eliminando áreas iguales de las colas de dos distribuciones diferentes: de la cola inferior 
de la t de Student y de la cola superior de la distribución tabulada por Dickey y Fuller. 
En algunos casos, la estrategia no permite tomar una decisión concreta sobre la 
existencia de raíz unitaria. Para resolver estas situaciones sugerimos contrastar la 
relevancia del término constante, y si la duda persiste, se lleva a cabo el contraste 
basado en el estadístico  Φ1 que propusieron Dickey y Fuller (1981). Finalmente, 
mediante un experimento Monte Carlo se pone de manifiesto que la estrategia 
propuesta es más potente y presenta menos distorsiones en el tamaño que el test 
convencional de Dickey-Fuller 
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ABSTRACT 
In this paper we introduce a strategy for testing the unit root hypothesis in a first-order 
autoregressive process with an unknown intercept where the initial value of the variable 
is a known constant. In the context of this model the standard Dickey-Fuller test is non-
similar, the intercept being the nuisance parameter. The testing strategy we propose 
takes into account this non-similarity. It is an unusual two-sided test of the random 
walk hypothesis since it involves two distributions where the acceptance region is 
constructed by taking away equal areas for the lower tail of the Student’s t distribution 
and the upper tail of the distribution tabulated by Dickey and Fuller under the null 
hypothesis of unit root. In some cases, this strategy does not allow the taking of a 
direct decision concerning the existence of a unit root. To deal with these situations we 
suggest testing for the significance of the intercept, and if doubt continues, we use Φ1 
test proposed by Dickey and Fuller (1981). Finally, in order to demonstrate the 
relevance of non-similarity, Monte Carlo simulations are used to show that the testing 
strategy is more powerful at stable alternatives and has less size distortions than the 
two-sided test considered by Dickey and Fuller. 
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Abstract 
 

In this paper we introduce a strategy for testing the unit root hypothesis in a first-order autoregressive 

process with an unknown intercept where the initial value of the variable is a known constant. In the context of 

this model the standard Dickey-Fuller test is non-similar, the intercept being the nuisance parameter. The 

testing strategy we propose takes into account this non-similarity. It is an unusual two-sided test of the random 

walk hypothesis since it involves two distributions where the acceptance region is constructed by taking away 

equal areas for the lower tail of the Student’s t distribution and the upper tail of the distribution tabulated by 

Dickey and Fuller under the null hypothesis of unit root. In some cases, this strategy does not allow the taking 

of a direct decision concerning the existence of a unit root. To deal with these situations we suggest testing for 

the significance of the intercept, and if doubt continues, we use Φ1 test proposed by Dickey and Fuller (1981). 

Finally, in order to demonstrate the relevance of non-similarity, Monte Carlo simulations are used to show that 

the testing strategy is more powerful at stable alternatives and has less size distortions than the two-sided test 

considered by Dickey and Fuller. 
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1 Introduction 

A problem arising in many time series applications is the question of whether a series is better 

characterized as stationary fluctuations around a deterministic trend or as non-stationary process that has no 

tendency to return to a deterministic path. The latter is equivalent to asking if the time series has a unit root 

and it is said that the series has stochastic trend. 

 

The non-stationarity has important economic and statistical implications which differe acording to its 

nature (Granger and Newbold (1974), Nelson and Kang (1981), and Nelson and Plosser (1982)). Therefore, the 

distinction between the two classes of above mentioned processes is fundamental for the understanding of the 

nature of economic phenomena, and to carry out the appropriate statistical treatment. 

 

The importance of distinguishing a deterministic trend from a stochastic trend motivates much of the 

interest in unit root tests. However, some practicioners decide to differentiate a time series on the basis of 

techniques less formal, such as visual inspection of the sample autocorrelation function of the series. With 

regard to this method, Roldan (2000) showed that it is good at detecting non-stationary but in some cases does 

not allow us to distinguish between the two types of trend. 

 

Dickey (1976), Fuller (1976), and Dickey and Fuller (1979) proposed some test statistics for the unit 

root hypothesis for an observed time series which can be generated by three different processes 

 

ttt eYY += −1ρ    t = 1, 2, …    (1) 

ttt eYY ++= −1ρµ   t = 1, 2, …    (2) 

ttt eYtY +++= −1ρβµ   t = 1, 2, …    (3) 

where { te } is a sequence of independent normal random variables with mean zero and variance 2σ . The unit 

root hypothesis corresponds to 1=ρ  in the three models and the statistics are based upon the usual OLS 

estimator of ρ in each model. 
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The distribution of Dickey and Fuller tests relied on the innovation process ( te ) being white noise, and 

so these tests are not appropriate if the innovations are ARMA process. However, independence and 

homoskedasticity are rather strong assumptions to make about the error in most empirical econometric work. 

Such a restriction is a considerable drawback in applying these tests to economic time series. Different testing 

procedures have been suggested to tackle this problem. 

 

Dickey and Fuller (1981) extended the DF tests to an AR process of known order containing no more 

than one unit root. The procedure, called ‘augmented’ Dickey-Fuller (ADF) tests, consists of adding to the 

models (1), (2) or (3) lagged changes in the dependent variable to capture autocorrelated omitted variables 

which would otherwise, by default, appear in the error term. Said and Dickey (1984) provided a test procedure 

valid for a general ARIMA(p,1,q) process for which p and q are of unknown orders. The method involves 

approximating the true process by an autoregression in which the number of lags increase with sample size 

(this approach represents a generalization of the procedure in which the ADF tests are based). Solo (1984) 

developed a testing procedure based on the LM test. An alternative approach was suggested by Phillips (1987) 

in the context of model (1) where more general dependence in the error process is allowed for, including 

conditional heteroscedasticity. This procedure does not require the estimation of additional parameters in the 

regression model (1), but Phillips suggests accounting for the autocorrelation that will be present (when these 

terms are omitted) through a non-parametric correction to standard statistics. Phillips and Perron (1988) 

extended the Phillips procedure to models (2)and (3).  

 

Simulation evidence in Schwert (1989) showed that Said-Dickey and Phillips-Perron procedures cause 

size distortions for models with MA terms. Hall (1989, 1992) and Pantula and Hall (1991) proposed an 

alternative approach to testing for unit roots in a time series with moving average innovations based on an 

instrumental variable estimator. 

 

On the other hand, Evans and Savin (1984) and Nankervis and Savin (1985, 1987) showed that the 

statistics proposed by Dickey and Fuller yield non-similar tests of the unit root hypothesis. Non-similarity 

implies that the distribution of a test statistic is affected by the value, under the null, of a nuisance parameter. 
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Specifically, the distributions of the DF tests based on equation (2) depend on µ under the null, whereas in (3) 

the nuisance parameter is β. In any case, if a test is non-similar, then the appropriate critical values may 

depend upon nuisance parameters and if they are unknown we can mistakenly reject or not reject the null 

hypothesis. Dickey and Fuller (1981) showed that the statistic based on equation (3) they proposed does not 

depend on µ under the null, so this statistic yields a similar test of the unit root hypothesis with drift. In this 

context, Nankervis and Savin (1985) proposed non-similar tests of the random walk hypothesis which involve 

two distributions and are substantially more powerful at most alternatives of interest than the similar tests 

considered by Dickey and Fuller (1981). Kiviet and Phillips (1990, 1992) considered exact and similar tests for 

the coefficient on a lagged dependent variable, in a first-order autoregressive model that may include multiple 

exogenous variable (these tests are known as KPh tests). 

 

In this paper, our focus of attention is non-similarity. The motivation for investigating this property is 

we consider that if the influence of nuisance parameters is taken into account when the unit root hypothesis is 

tested in (2) and (3), the powers of Dickey and Fuller tests may be improved. Specifically, we propose a 

sequential procedure for testing the unit root in (2) on the basis of the idea of the two distributions test 

introduced by Nankervis and Savin (1985). Since we are interested in detecting the unit root, we state a two-

sided test in the strategy, so the alternative hypothesis is: ‘absence of unit root’. 

 

The first proposal for a sequential procedure we can find appears in Perron (1988), and Dolado et al. 

(1990). They advocated the sequential use of Dickey-Fuller unit root tests and tests for the presence of a trend. 

On the other hand, Ayat and Burridge (2000) propose a sequential procedure for unit root testing and 

simultaneous identification of trend degree. Specifically, by using unit root tests as pre-tests before testing trend 

degree they improve efficiency of trend and parameter ρ estimators. 

 

In general, the goal of these procedures is testing for the unit root (against stationary alternative) and 

the presence of trend at the same time. Besides, in all of them is necessary the estimation of different models. 

The strategy we propose is for testing the unit root in (2) irrespective of nuisance parameter µ, against ‘no unit 

root’ and it is based on only one estimated model. 
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Thus, the aims of the present paper are as follows: 

- To propose a testing strategy for the unit root hypothesis in (2) from the point of view of non-similarity. 

- To compare the power and size of the two-sided tests of the unit root hypothesis proposed by Dickey and 

Fuller with the power and size of the testing strategy in the context of the model (2) using a Monte Carlo 

experiment. 

 

The plan of the paper is as follows. In Section 2 we study the distributions of the usual regression t and 

F statistics in model (2) considering the effect of nuisance parameters. On the basis of these distributions we 

propose a strategy for tesing the unit root hypothesis in (2). We describe the Monte Carlo experiment in Section 

3. In Section 4 we estimate the nominal size of the strategy. Monte Carlo estimates of the power of the Dickey 

and Fuller tests and the strategy are reported in Section 5. Section 6 contains concluding comments. 

 

2 Testing the unit root in an AR(1) model with intercept in the context of non-similarity  

The class of model we investigate consists of the model 

1t t tY Y eµ ρ −= + +  Tt ,,2,1 K=     (5) 

where µ and ρ are unknown real numbers. We assume that 0Y  is a known constant and equal to zero and the 

{ te } is a sequence of independent normal random variables with mean zero and variance 2σ .  

 

2.1 Testing ρ = 1 

For testing the unit root hypothesis in (5) a two-sided test is stated 

     H0: ρ = 1 

     HA: ρ ≠ 1 

Usually, this test is based on the t statistic associated with the ordinary least squares (OLS) estimator of ρ in 

(5). This t statistic for ρ will be denoted by t
µρ .  
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The distribution of t
µρ  statistic under the null ( 1=ρ ) depends on the value of µ. Specifically, if 0=µ  

the distribution is non-standard and Dickey (1976) obtained the empirical quantiles of the limiting and finite 

sample distribution by Monte Carlo methods (Fuller 1996, pp. 641-642)1. In this particular case the statistic is 

denoted by µτ̂ . These authors assumed 0Y  fixed in (5) but the distribution of µτ̂  does not depend on the value 

of 0Y . 

 

In the context of (5) Dickey (1976, p.58) shows that when 1=ρ  and 0µ ≠  the t
µρ  statistic has 

asymptotically a standard normal distribution. 

 

On the other hand, Nankervis and Savin (1985) establish that as µ tends to infinity, the sampling 

distribution of t
µρ  for 1=ρ  tends to Student’s t with T−2 degrees of freedom, assuming the innovations are 

i.i.d. (0, 2σ ) and 00 =Y . Actually, this is a particular result since they proved the result for a model in which 

there can be K exogenous variables. They showed empirically that when 10µ ≥  Student’s t provides a 

satisfactory approximate distribution of t
µρ  for 1=ρ . 

Therefore, the t
µρ  statistic for 1=ρ  yields a non-similar test of the unit root hypothesis in (5) since its 

distribution under the null is influenced by the values of the nuisance parameter µ.  

 

In Figure 1 fD is an approximation to the empirical density of Dickey-Fuller µτ̂  statistic ( 1=ρ , 0=µ ) 

for fixed T, and fS is the density of the Student’s t with T−2 degrees of freedom ( 1=ρ , µ = ∞ ).  

            
Likewise, in this Figure 1, DF1−α/2 and DFα/2 denote the empirical quantiles of the distribution of µτ̂ . 

Thus, (DF1−α/2; DFα/2) is the acceptance region of the test 

H0: 1=ρ  (assuming 0=µ ) 

H1: 1ρ ≠  

                                                        
1 Extended tabulations can be found in Guilkey, D.K. and Schmidt, P. (1989). 
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On the other hand, tT−2;α/2 denotes the quantile of order α/2 of Stundent's t with T−2 degrees of 

freedom, and (−tT−2;α/2; tT−2;α/2) is the acceptance region of the test  

H0: 1=ρ  (assuming 0µ ≠ ) 

H1: 1ρ ≠  

 

As µ is unknown, we propose to test the unit root hypothesis using the two distributions mentioned 

above simultaneously, where the acceptance region of the test would be (−tT−2;α/2; DFα/2) (region C in Figure 1). 

Thus, if the computed value of t
µρ  statistic ( t̂

µρ  hereafter) lies in region C we do not reject the null hypothesis 

of a unit root with both tests. Therefore, 1=ρ  and µ can be any real number. 

 

However, if t̂
µρ  lies in region A or in region E we reject the unit root hypothesis with both Dickey-

Fuller and Student’s t critical values. In this situation we conclude that 1ρ ≠ , µ being any real number. 

Therefore, A and E are regions where we always reject the null hypothesis of unit root.  

 

On the other hand, if the computed value of t
µρ  statistic lies in region B = (DF1−α/2; −tT−2;α/2) we have 

the following: 

 

a) On the basis of critical values tabulated by Dickey (1976) the null hypothesis is not rejected since in 

this region t̂
µρ ∈ (DF1−α/2; DFα/2). Therefore, we conclude that 1=ρ , 0=µ . 

b) If we use the critical values of Student's t we have that t̂
µρ ∉ (−tT−2;α/2; tT−2;α/2), so we reject H0: 

1=ρ , 0µ ≠  and conclude that 1ρ ≠ . It is likely that the rejection in this region is due to the case 1ρ <  and 

0µ ≠ . 

 

As we can see there are two possible decisions. If we do not use the correct critical values we may take 

a wrong decison. Everything depends on µ. 
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Region D = (DFα/2; tT−2;α/2) is an analogous case of region B. In this region 

 

a) The critical values of Student's t do not allow us to reject H0: 1=ρ , 0µ ≠ , since t̂
µρ ∈ (−tT−2;α/2; 

tT−2;α/2). 

b) If we consider the critical values tabulated by Dickey (1976) we have that t̂
µρ ∉ (DF1−α/2; DFα/2), so 

we reject the null hypothesis H0: 1=ρ  (assuming 0=µ ) and conclude that 1ρ ≠ . In this case, it is expected 

that 1ρ >  and 0=µ . 

Again, to take the correct decision depends on what is known about µ. The problem is that µ is 

unknown which is the most common situation in practice. To overcome this difficulty we propose to test for the 

significance of the parameter µ.  

Table 1 presents the regions mentioned in this section and the consequence derived when t̂
µρ  lies in 

each one of them. 

 
 
2.2 Testing µ =0 

To test for the significance of µ in (5) we state a two-sided test  

     H0: 0=µ  

     HA: 0µ ≠  

 

This test is based on the t statistic associated with the OLS estimator of µ in (5). This t statistic for µ 

will be denoted by tµ . 

 

In this case the distribution of tµ  under the null ( 0=µ ) depends on ρ. Dickey and Fuller (1981) 

obtained the limiting distribution of tµ  statistic for 0=µ  under the assumption that 1=ρ , which they denoted 

by αµτ̂  (it is bimodal and symmetric with 5 percent points well beyond 2). This limiting distribution holds for 

any 0Y  fixed and for te  a sequence of independent identically distributed random variables, but it is non-



 9

standard and Dickey and Fuller (1981, p.1062) obtained percentage points for it by Monte Carlo methods. They 

gave empirical quantiles of the limiting and finite sample distributions.  

 

The asymtotic theory for autoregression is developed in Fuller, Hasza, and Goebel (1981) assuming the 

innovations are i.i.d. (0, 2σ ). By Theorem 2 in Fuller, Hasza, and Goebel (1981), when 1ρ <  the limiting 

distribution of tµ statistic is normal, whereas it follows from Theorem 4 in Fuller, Hasza, and Goebel (1981) 

that when 1ρ >  the limiting distribution of tµ statistic is normal if, and only if, te  are normal independent 

(0, 2σ ) random variables. For these reasons the Student’s t with T−2 degrees provides a satisfactory 

approximate distribution of tµ  for 1ρ ≠ . 

 

Therefore, the distribution of tµ statistic is influenced by the values of the parameter ρ and it yields a 

non-similar test of the hypothesis 0=µ  in (5). 

 

An approximation to the empirical density of Dickey-Fuller αµτ̂  statistic for fixed T (fD), and the 

density of the Student’s t with T−2 degrees of freedom (fS) are plotted in Figure 2. 

 
 
         

We note that the distribution of αµτ̂  is much larger than that of Student’s t distribution, so that the 

critical values tabulated by Dickey and Fuller (1981, p.1062) are higher than those Student’s t in absolute value 

at the same significance level. 

 

In Figure 2, DFα/2 denote the empirical quantile of the distribution of αµτ̂ . Thus, (−DFα/2; DFα/2) is the 

acceptance region of the test 

H0: 0=µ  (assuming 1=ρ ) 

HA: 0≠µ  
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On the other hand, (−tT−2;α/2; tT−2;α/2) is the acceptance region of the test  

H0: 0=µ  (assuming 1ρ ≠ ) 

H1: 0≠µ  

 

We take into account the non-similarity of tµ  statistic if we use simultaneously the two distributions 

plotted in Figure 2 to test the hypothesis 0=µ . In this case, the critical values of these distributions establish 

five regions which are labelled A, B, C, D, and E. 

 

Thus, C=(−tT−2;α/2; tT−2;α/2) is the acceptance region of the test based on the two distributions. 

Therefore, if the computed value of tµ  statistic ( µt̂  hereafter) lies in region C the null hypothesis is not 

rejected, that is, we conclude that 0=µ  and ρ can be any real number. 

 

If µt̂  lies in region A or in region E, it would lead to the rejection of the hypothesis that 0=µ  since in 

these regions | µt̂ | > |DFα/2| > | tT−2;α/2|. We would conclude that 0≠µ  and ρ can be any real number. 

 

Finally, if the computed value of tµ  statistic lies in region B = (−DFα/2,−tT−2;α/2) or in region D = 

(tT−2;α/2, DFα/2) we can take one of two different decisions. Everything depends on the critical values we use: 

a) On the basis of critical values tabulated by Dickey and Fuller the null hypothesis is not rejected 

since in these regions is | µt̂ | <  |DFα/2|. Therefore, we can not reject the hypothesis that 0=µ  assuming 1=ρ . 

b)The critical values of Student’s t would lead to the rejection of 0=µ  since | µt̂ | >|tT−2;α/2|. We 

conclude that 0≠µ , and the most likely is that 1ρ ≠ . 

We note that the decision in regions B and D depends on what we know about parameter ρ.  

 

However, ρ is also unknown, so we cannot draw any conclusions about ρ and µ. To solve this situation 

we propose to test the joint hypothesis (µ, ρ) = (0, 1) using an F statistic. 
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The regions introduced in this section and the derived consequence when µt̂  lies in each one of them 

are reported in Table 2. 

 
 
2.3 Testing (µ, ρ) = (0, 1) 

The statistic Φ1 is the likelihood ratio test of (µ, ρ) = (0, 1) against the alternative (µ, ρ) ≠ (0, 1) for 

model (1). It is an F statistic that is computed by ordinary least squares, but its distribution under the null 

hypothesis is not that of Snedecor’s F.  

 

Dickey and Fuller (1981, p.1063) have characterized the limiting distribution of Φ1 when 1ρ = , 

0=µ  and have given the empirical quantiles of the limiting and finite sample distributions. 

 

2.4 A Testing Strategy 

From the previous discussion we propose the following strategy to test the unit root hypothesis in the 

context of model (5). First, we test the null hypothesis of a unit root using simultaneously the two distributions 

of t
µρ  statistic mentioned in section 2.1. If the computed value of t

µρ  statistic lies in region A or in E we 

conclude that 1ρ ≠ . However, when this value is in region C we do not reject the null and differencing is 

necessary to achieve a stationary series. To solve the doubt that arises when the computed value of t
µρ  statistic 

lies in region B or in D, we test the hypothesis that 0=µ  against the alternative 0µ ≠  for the model (5). 

 

This test is based on tµ  statistic and we use again a non-similar test which involves two distributions. 

If we cannot reject 0=µ , then we test the unit root hypothesis again, but now using the critical values 

tabulated by Dickey and Fuller. If we reject 0=µ , we conclude that 0µ ≠  and we test the unit root hypothesis 

using the Student´s t distribution. Finally, if we cannot take a decision about µ (that is, the computed value of 

tµ  statistic lies in region B or in D) we test the joint hypothesis H0: (µ, ρ) = (0,1) against HA: not H0 for the 

model (5) using Φ1 statistic.     
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3 Monte Carlo Experiment 

In order to compare the powers of the two-sided tests of the random walk hypothesis (DFµ  test) and of 

the random walk hypothesis with drift (DFt test) considered by Dickey and Fuller with the powers of the 

strategy, we develop a Monte Carlo experiment using the model 

1t t tY Y eµ ρ −= + +  Tt ,,2,1 K=     (6) 

 

with 00 =Y  and te ∼NID(0,1). 

 

Ten thousand samples of size T = 50, 100, 250 and 500 were generated for ρ = 0.8, 0.9, 0.95, 1.00, 

1.05, 1.1, and 1.2, and µ = 0, 0.5, 1, 2 and 10. DF tests and strategy were performed on each data series. All 

simulations were carried out using routines developed in Eviews 4.1 with the random number generator 

contained therein. 

 

The experiment allowed us to obtain the empirical quantile functions of the t
µρ  and tµ  statistics of the 

hypothesis 1ρ =  and 0=µ  in (6), respectively. Thus, we estimated the quantiles of  t
µρ  statistic for 1ρ =  for 

each of the values of µ. For the case µ = 0, the results confirm the estimated percentiles in Dickey (1976) and 

Fuller (1996). Likewise, our estimates of tµ  statistic for 0=µ  and 1ρ =  are the same as those reported in 

Dickey and Fuller (1981). Also, we calculated the percentage of times that the computed values of t
µρ  and tµ  

lie in each one of the regions introduced in this paper. These results (available on request) are reported in 

Roldan (2000) and confirm that the tests based on t
µρ  and tµ  are non-similar. 

 

4 Nominal size 

 Before comparing the behaviour of the strategy with the DFì  and DFt tests, it is worth determining the 

nominal size of each of these, i.e., calculating in each case the maximum probability of rejecting the null 

hypothesis of unit root when this is true. Given that the distribution of the statistic t
µρ  under this null 

hypothesis is not similar to the nuisance parameter ì , this probability will depend on the true value of the 
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parameter. Therefore, in the case of the DFì  test we must not expect the nominal size to coincide with the 

significance level á which was set in order to perform the test. In the case of the strategy, although we bear in 

mind the lack of similarity with the statistic t
µρ , the possibility of applying up to three tests in succession leads 

us to believe that neither will the nominal size coincide with the level of significance á which is fixed in each of 

the tests mentioned. Finally, for the DFt test it is not necessary to perform any calculations, since its similarity 

respect to ì  allows us to claim that its nominal size will coincide with the level of significance á which has been 

set in order to perform the test. 

 

 In this study, we estimate the nominal size of both tests for a range of sample sizes (T = 50, 100, 250 

and 500) and significance levels (α = 0.02, 0.05 and 0.1). Specifically, once some values of T and á have been 

set, we calculate the probability of rejecting the null hypothesis ( 1ρ = ) on the assumption that this is true 

(probability of committing a type I error (P(I)), for the various values of ì  considered in the study, such that the 

nominal size estimated by these values of T and á will be the largest of the probabilities calculated. 

 

4.1 Strategy 

 Since the strategy may require the successive application of up to three tests, the final decision to reject 

the null hypothesis may be the result of a chain of decisions. In such a case, therefore, the final probability of 

rejecting the null hypothesis of 1ρ =  will be the product of the probabilities of making these successive 

decisions. If there exist different sequences of decisions which lead to the final decision to reject 1ρ = , the 

total probability of rejection will be the sum of the probabilities of rejection associated with each of these 

sequences. 

 

 The probability of making a concrete decision in a sequence of decisions is the probability that the 

calculated value of the corresponding statistic ( t
µρ , tµ  or Φ3) will fall within one of the specific zones 

established by the strategy. The probability is thus the area under the density function of the statistic, between 

the critical values that delimit the zone concerned. 
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 Irrespective of which statistic is employed, the density function referred to in the previous paragraph is 

that which corresponds to the distribution of the statistic under the null hypothesis, i.e. its distribution for ñ = 1 

and the value of ì  that is being considered. For the calculation of nominal size, we have taken the distributions 

of these statistics which Dickey and Fuller obtained for 1ρ =  and 0µ = , while for the cases of 1ρ =  and 

µ = 0.5, 1, 2 and 10, the calculations are based on the distributions obtained empirically by the Monte Carlo 

experiment which we have described in detail in section 3. 

 

4.2 DFì  Test 

 The nominal size of the DFì  test is estimated in a way similar to that described by the strategy. 

However, in this case it will only be necessary to consider the distribution of the statistic t
µρ  in each specific 

case of 1ρ =  and 0µ µ=  since the DFì  test only involves performing a test (that based on the statistic ˆµτ ), 

 

4.3 Results 

 Tables 3-6 illustrate, for each value of T and ì , and for a given level of significance á in each of the 

tests involved in the strategy, the estimates of the probability of rejecting, with this strategy, the null hypothesis 

of unit root when this is true, calculated as described in section 4.1. 

 

 These results demonstrate that, when 50T =  or 100, in cases where µ = 0, 0.5 or 1, the probability of 

rejection is greater than the level of significance á that had been set. In the other cases, the probability is very 

similar to the value of á, i.e. it approaches á as ì  grows for each value of T, as well as for each value of ì  as T 

increases. 

 

 Similarly, Tables 7 to 10 show the estimates of rejecting the null hypothesis using the DFì  test for the 

same values of T, á and ì . The first thing to note about Tables 7-10 is that DFµ test is severely affected by the 

true value of the intercept µ in the data-generation process. We can see that when 0=µ , the estimated P(I) for 

this test is equal to the significance level α fixed for each T. This is not surprising since DFµ test is based on 

µτ̂  statistic which incorporates the knowledge that the true value of the intercept is zero. However, as the value 



 15

of µ increases, the P(I) estimates for each T become farther away from the value of α considered. These 

distortions do not dissapear with the increasing of T. 

 

 On the basis of the results shown in Tables 3-6 and 7-10 we have estimated the respective nominal 

sizes of the strategy and the DFì  test for a range of values of T and á, in each case taking the largest probability 

of rejection of the null hypothesis of unit root when this is true for the various values of the nuisance parameter 

ì  considered. These values are presented in Table 11. 

 

 In the case of the strategy, these results enable the researcher to know, for a given value of T and 

irrespective of the value of ì , the theoretical size with which he is working when he sets a given level of 

significance á in the three tests involved in the strategy. For example, if for 100T = , the researcher sets a value 

of 0.02α =  in the three tests, he will be working with a theoretical size estimate of 0.0563. 

 

 On the other hand, it can clearly be seen that in every case the DFì  test produces a much larger size 

distortion than does the strategy. Furthermore, in the case of the DFì  test, not only does this distortion not 

disappear when the sample size T increases, but it even increases slightly, apparently stabilizing (at around 

0.27, 0.41 and 0.52, for values of α = 0.02, 0.05 and 0.10 respectively). In the strategy, meanwhile, the 

distortion practically disappears as T increases, since the estimated nominal size for 500T =  is very close to 

the significance level á (0.022, 0.06 and 0.134 for values of α = 0.02, 0.05 and 0.10 respectively). 

 

5 Strategy vs. DF tests 

5.1 Empirical size 

 Table 12 shows the Monte Carlo powers of two-sided size tests (the strategy and DF tests) for 1ρ = , 

i.e. the empirical probability of Type I error (P(I)) using 5% critical values for both tests. 

 

 In the case of the DFì  test, these probabilities are identical to the theoretical probabilities presented in 

Tables 7-10 for 0.05α = . As far as the strategy is concerned, we can see that the empirical probabilities when 

0.5µ =  and 50T =  or 100 are much higher than the corresponding theoretical probabilities estimated for 
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0.05α =  (Tables 3-6), while in the other cases the empirical and theoretical results are similar. Finally, we can 

see that the P(I) values estimated for the DFt test are very close to 0.05 in every case. 

 

 In Table 12, taking the maximum probability of Type I error for each T irrespective of the value of ì , 

we obtain the empirical size of the three tests for each value of T and a significance level of 0.05α = . These 

values are shown in Table 13, where we can see that the empirical size of the DFì  test is identical to the 

nominal size estimated (Table 11) for each T, always being above 0.37. In the case of the strategy, the empirical 

results are higher than the corresponding nominal results estimated for 0.05α =  (these values, which are 

always higher than 0.22, correspond to the cases 0.5µ =  when 50T =  and 100, and 0µ =  when 250T =  and 

500). Finally, the empirical sizes for the DFt  test are a consequence of the similar character of this test with 

respect to the nuisance parameter ì , whose nominal size in all the cases considered in the Monte Carlo 

experiment is 0.05. 

 

Figure 3 is a graphical representation of the information shown in Table 13. 

 
 

5.2 Monte Carlo powers 

Tables 14 to 17 report the power calculations of DF tests and strategy. The most striking feature of 

these results is that the estimated powers of the strategy are greater than or equal to the estimated powers of the 

DF tests.  

 

 At the same time, it is quite clear that in all the alternatives, the least powerful of the three tests is the 

DFt test. This was only to be expected, since this test is based on estimating the model (6) with the inclusion of 

the irrelevant regressor t. The inclusion of this regressor means that the DFt test will be similar respect to ì , 

while it results in a considerable loss of power, particularly in the stable alternatives, with the other two tests 

always being more powerful. For this reason, we restrict ourselves to comparing the power of the strategy with 

that of the DFì  test. 
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Stable alternatives 

At stable alternatives ( 1ρ < ) the powers of the DFµ test and the strategy are strongly influenced by 

the value of the nuisance parameter µ. As µ increases the powers tend to unity at each sample size. Thus, we 

can see that at 10=µ  the power of each test is 100 per cent at all stable alternatives. However, when µ is near 

zero the powers of both tests are poor for small samples and values of ρ near but less than unity. For instance, 

at 95.0=ρ , 0=µ  and for a sample size of 100=T , the strategy and DFµ test only achieve a power of 0.142 

and 0.0594 respectively.  

 

On the other hand, the above mentioned convergence is more rapid the larger T, provided ρ is not very 

close to unity. For example, at 500=T we can say that the powers of both tests are equal to unity at the stable 

alternatives when 1≥µ . However, for small values of T and ρ near but less than unity, the power is 100 per 

cent only when 2>µ . For instance, at 50=T  the power of DFµ test when 2=µ  is below 0.9 at all 

alternatives. In this case, the strategy always performs better since the minimum estimated power is 0.9867 

corresponding to 0.95ρ = . Finally, at 100=T  the velocity of convergence increases since the powers of both 

tests are practically 1 when 2=µ . 

 

We note that the convergence is more rapid in the case of the strategy for each ρ and T. This is 

particularly evident for 50=T  and 9.0=ρ , where the power of DFµ test increases from 0.0535 to 0.086, 

0.2384 and 0.8868 for =µ 0.5, 1 and 2, respectively, while the sequence of estimated powers of the strategy at 

the same alternative is 0.062, 0.1868, 0.5855 and 0.9985. Similar results occur at =ρ 0.8 and 0.95. 

 

Explosive alternatives 

For 1ρ >  the powers of the DFµ test and the strategy are much the same for all T and µ. Specifically, 

for =ρ 1.1 and 1.2 the powers are aproximately equal to unity. Only, when 1.1=ρ , 0=µ  and 50=T  are the 

powers of both tests slightly below 1 (0.9686 and 0.9699, respectively). 
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At the nearest alternative to unity ( 1.05ρ = ) the powers of the tests are, in general, very close to 1 for 

each value of µ and T except at 0=µ  and 50=T . In this case, the power of DFµ test is only 0.6771 and the 

power of strategy is 0.7006. 

 

 
5 Concluding comments 

This paper has examined the unit root test in an AR(1) model with unknown intercept. We have 

analyzed the distributions of the usual t and F statistics for the model considered taking into account the 

property of non-similarity, and the influence of the values of the nuisance parameters has been evident. 

 

A testing strategy based on the idea of the two distributions test considered by Nankervis and Savin 

(1985) has been proposed to test the unit root hypothesis in the context of the first-order autoregressive process 

with unknown intercept. It takes into account the non-similarity, and the critical values establish uncertain 

regions which can lead to a wrong decision if we do not use the correct distribution. However, these uncertain 

situations are solved testing for the significance of the intercept, and if a new doubt arises we apply an F test of 

the random walk hypothesis.  

 

The two-sided test developed by Dickey and Fuller (1979) in the context of model (2) (DFµ test) 

presents serious size distortion for each T. This distortion not only does not disappear when the sample size T 

increases, but it even increases slightly, apparently stabilizing (at around 0.27, 0.41 and 0.52, for values of 

α = 0.02, 0.05 and 0.10 respectively). In the strategy, meanwhile, the distortion is less serious and practically 

disappears as T increases, since the estimated nominal size for 500T =  is very close to the significance level á 

(0.022, 0.06 and 0.134 for values of α = 0.02, 0.05 and 0.10 respectively). 

 

Monte Carlo simulations in this article show that, compared to the two-sided tests considered by 

Dickey and Fuller (1979), the strategy has superior power at stable alternatives. In particular, when the value of 

the intercept is very close to zero, the three tests have low power at stable alternatives near unity, even for 

samples as large as T = 100. As the value of the intercept increases, the power of three tests tends to 100 per 
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cent, although the convergence of the strategy is much more rapid. This means that the strategy is better at 

detecting a false unit root hypothesis when the value of the intercept is not equal to zero, but less than 10. At 

explosive alternatives, the powers of three tests are much the same and equal to unity at almost all alternatives 

considered.  

  

On the other hand, Monte Carlo experiment (with a significance level of  0.05α = ) shows that the 

DFµ test is identical to its nominal size estimated for each T, always being above 0.37. In the case of the 

strategy, the empirical size is around 0.22 for each T. 

 

In respect to the size, the two-sided test proposed by Dickey and Fuller (1979) based on model (3) (DFt 

test) is the best because it is a similar test of the random walk hypothesis with drift. However, as the strategy is 

much more powerful than DFt test at all alternatives, we consider that, in general, the strategy is preferable for 

testing the unit root in (2). 

 

A reasonable extension of this paper is to extend the strategy to model (3). In this respect we may refer 

to the work of Roldan (2000). The author shows that the strategy performs better than the two-sided test 

developed by Dickey and Fuller (1979) in the context of model (3) (DFt test). Specifically, the strategy is 

substantially more powerful at most alternatives of interest than the DFt test. Likewise, the strategy presents 

less size distortions. 

 

Finally, it may be of interest to know the performance of the strategy respect to another unit root tests. 

We are investigating these comparisions and will be introduced in a subsequent paper. 
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Figure 1: Density of t

µρ  for ρ = 1 and T fixed when 0=µ  and 0µ ≠  
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     Figure 2:  Density of tµ  statistic for µ = 0 and T fixed,  when 1=ρ  and 1ρ ≠   
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 Figure 3: Empirical size 
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          Table 1. Consequences depending on the region in which 
µρt̂  lies 

REGION INTERVAL CONSEQUENCE 
A (−∞;DF1−α/2) ρ < 1,  µ any 

B (DF1−α/2; −tT−2;α/2) 
ρ = 1 (assuming µ = 0) 

or 
ρ < 1, µ ≠0 

C (−tT−2;α/2; DFα/2) ρ = 1, µ  any 

D (DFα/2; tT−2;α/2) 
ρ = 1 (assuming µ ≠0) 

or 
ρ > 1, µ ≠0 

E (tT−2;α/2; +∞) ρ > 1,  µ any 
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           Table 2. Consequences depending on the region in which µt̂  lies 

REGION INTERVAL CONSEQUENCE 
C (−tT−2;α/2; tT−2;α/2) µ = 0, ρ any 
A (−∞; −DFα/2) 
E (DFα/2; +∞) 

µ ≠ 0, ρ any 

B (−DFα/2; −tT−2;α/2) 
D (tT−2;α/2; DFα/2) 

µ = 0, ρ = 1 or µ ≠ 0, ρ ≠ 1 
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Tables 3-6: Estimates of probability of Type I error for the strategy using the significance level α 

 
Table 3 

         T= 50 
µ | α 0.02 0.05 0.10 
0 0.0216 0.0592 0.1323 

0.5 0.0803 0.1098 0.1423 

1 0.0266 0.0564 0.1096 

2 0.0186 0.0464 0.1005 

10 0.0197 0.0487 0.0984 

 
Table 6 

         T= 250 
µ | α 0.02 0.05 0.10 
0 0.0222 0.0600 0.1343 

0.5 0.0262 0.0601 0.1141 

1 0.0194 0.0522 0.1012 

2 0.0179 0.0452 0.0948 

10 0.0182 0.0477 0.0990 

 
Table 4 

         T= 100 
µ | α 0.02 0.05 0.10 
0 0.0218 0.0596 0.1323 

0.5 0.0563 0.0739 0.1167 

1 0.0217 0.0528 0.1024 

2 0.0201 0.0509 0.1015 

10 0.0192 0.0501 0.1013 

 
Table 6 

         T= 500 
µ | α 0.02 0.05 0.10 
0 0.0220 0.0604 0.1348 

0.5 0.0214 0.0505 0.0985 

1 0.0215 0.0533 0.1025 

2 0.0194 0.0503 0.1010 

10 0.0215 0.0510 0.0973 
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Tables 7-10: Estimates of probability of Type I error for DFµ test using the significance level α 

 
Table 7 

         T= 50 
µ | α 0.02 0.05 0.10 
0 0.0200 0.0500 0.1000 

0.5 0.1293 0.2216 0.3223 

1 0.1854 0.3029 0.4207 

2 0.2199 0.3451 0.4653 

10 0.2503 0.3780 0.4972 

 
Table 9 

         T= 250 
µ | α 0.02 0.05 0.10 
0 0.0200 0.0500 0.1000 

0.5 0.2009 0.3201 0.4389 

1 0.2392 0.3730 0.4913 

2 0.2486 0.3825 0.5058 

10 0.2666 0.4011 0.5224 

 

 
Table 8 

         T= 100 
µ | α 0.02 0.05 0.10 
0 0.0200 0.0500 0.1000 

0.5 0.1685 0.2770 0.3972 

1 0.2098 0.3327 0.4523 

2 0.2324 0.3619 0.4826 

10 0.2588 0.3918 0.5191 

 
Table 10 

         T= 500 
µ | α 0.02 0.05 0.10 
0 0.0200 0.0500 0.1000 

0.5 0.2242 0.3441 0.4647 

1 0.2498 0.3784 0.5040 

2 0.2640 0.3919 0.5139 

10 0.2654 0.4010 0.5264 
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         Table 11: Estimated nominal size for strategy, DFµ test and DFt test 
T | α* 0.02 0.05 0.10 
 Strategy DFµ Strategy DFµ Strategy DFµ 

50 0.0803 0.2503 0.1098 0.3780 0.1423 0.4972 

100 0.0563 0.2588 0.0739 0.3918 0.1323 0.5191 

250 0.0262 0.2666 0.0601 0.4011 0.1343 0.5224 

500 0.0220 0.2654 0.0604 0.4010 0.1348 0.5264 
  *significance level 
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Table 12: Empirical probability of Type I error for strategy and DF tests 
  µ 
  0 0.5 1 2 10 

Strategy 0.2100 0.2853 0.1461 0.0464 0.0487 
DFµ test 0.0471 0.2216 0.3029 0.3451 0.3780 T = 50 
DFt test 0.0479 0.0533 0.0512 0.0490 0.0510 

 
Strategy 0.2135 0.2870 0.0544 0.0509 0.0501 
DFµ test 0.0501 0.2770 0.3327 0.3619 0.3918 T = 100 
DFt test 0.0477 0.0458 0.0496 0.0486 0.0494 

 
Strategy 0.2210 0.0975 0.0522 0.0452 0.0477 
DFµ test 0.0528 0.3201 0.3730 0.3825 0.4011 T = 250 
DFt test 0.0489 0.0521 0.0458 0.0480 0.0508 

 
Strategy 0.2242 0.0505 0.0533 0.0503 0.0510 
DFµ test 0.0533 0.3441 0.3784 0.3919 0.4010 T = 500 
DFt test 0.0479 0.0484 0.0502 0.0527 0.0506 
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     Table 13: Empirical size* 

T Strategy DFµ test DFt test 

50 0.2853 0.3780 0.0533 
100 0.2870 0.3918 0.0496 
250 0.2210 0.4011 0.0521 
500 0.2242 0.4010 0.0527 

     *significance level (α = 0.05) 
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Table 14: Monte Carlo Power of Two-Sided 0.05 Tests for 1ρ =  and 50=T  )0( 0 =Y  
 ρ = 0.8 ρ = 0.9 ρ = 0.95 

µ 0 0.5 1 2 10 0 0.5 1 2 10 0 0.5 1 2 10 

Strategy 0.2170 0.7293 0.9550 0.9993 1 0.1341 0.5725 0.8472 0.9982 1 0.1575 0.4496 0.6770 0.9870 1 
DF test 0.1915 0.2240 0.3734 0.8870 1 0.0616 0.0869 0.2394 0.8916 1 0.0376 0.0614 0.1801 0.8072 1 
DFt test 0.1116 0.1192 0.1592 0.3896 1 0.0473 0.0496 0.0677 0.1622 1 0.0410 0.0495 0.0702 0.0923 0.9796 
 

Table 14: (cont.) 
 ρ = 1.05 ρ = 1.1 ρ = 1.2 

µ 0 0.5 1 2 10 0 0.5 1 2 10 0 0.5 1 2 10 

Strategy 0.7006 0.9976 1 1 1 0.9699 0.9978 1 1 1 0.9993 1 1 1 1 
DF test 0.6771 0.9973 1 1 1 0.9686 0.9973 1 1 1 0.9992 0.9999 1 1 1 
DFt test 0.3890 0.9807 1 1 1 0.9538 0.9964 1 1 1 0.9991 0.9999 1 1 1 
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Table 15: Monte Carlo Power of Two-Sided 0.05 Tests for 1ρ =  and 100=T  )0( 0 =Y   
 ρ = 0.8 ρ = 0.9 ρ = 0.95 

µ 0 0.5 1 2 10 0 0.5 1 2 10 0 0.5 1 2 10 

Strategy 0.7160 0.9732 0.9996 1 1 0.2112 0.8775 0.9904 1 1 0.1420 0.7203 0.9620 1 1 
DF test 0.7148 0.7744 0.8895 0.9982 1 0.1793 0.2656 0.5861 0.9985 1 0.0594 0.1257 0.5078 0.9991 1 
DFt test 0.4629 0.5122 0.6187 0.9209 1 0.1055 0.1268 0.2201 0.6995 1 0.0472 0.0518 0.0848 0.3402 1 
 

Table 15: (cont.) 
 ρ = 1.05 ρ = 1.1 ρ = 1.2 

µ 0 0.5 1 2 10 0 0.5 1 2 10 0 0.5 1 2 10 

Strategy 0.9737 0.9999 1 1 1 0.9999 1 1 1 1 1 1 1 1 1 
DF test 0.9716 0.9999 1 1 1 0.9999 1 1 1 1 1 1 1 1 1 
DFt test 0.9596 0.9999 1 1 1 0.9999 1 1 1 1 1 1 1 1 1 
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Table 16: Monte Carlo Power of Two-Sided 0.05 Tests for 1ρ =  and 250=T  )0( 0 =Y  
 ρ = 0.8 ρ = 0.9 ρ = 0.95 

µ 0 0.5 1 2 10 0 0.5 1 2 10 0 0.5 1 2 10 

Strategy 1 1 1 1 1 0.9012 0.9999 1 1 1 0.3110 0.9860 0.9999 1 1 
DF test 1 1 1 1 1 0.9011 0.9465 0.9945 1 1 0.2913 0.5099 0.9525 1 1 
DFt test 0.9999 1 1 1 1 0.6842 0.7526 0.9044 0.9999 1 0.1562 0.2336 0.5399 0.9968 1 

 
Table 16: (cont.) 
 ρ = 1.05 ρ = 1.1 ρ = 1.2 

µ 0 0.5 1 2 10 0 0.5 1 2 10 0 0.5 1 2 10 

Strategy 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
DF test 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
DFt test 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Table 17: Monte Carlo Power of Two-Sided 0.05 Tests for 1ρ =  and 500=T  )0( 0 =Y  
 ρ = 0.8 ρ = 0.9 ρ = 0.95 

µ 0 0.5 1 2 10 0 0.5 1 2 10 0 0.5 1 2 10 

Strategy 1 1 1 1 1 1 1 1 1 1 0.8904 1 1 1 1 
DF test 1 1 1 1 1 1 1 1 1 1 0.8904 0.9703 0.9999 1 1 
DFt test 1 1 1 1 1 0.9999 0.9999 1 1 1 0.6692 0.8099 0.9813 1 1 

 
Table 15: (cont.) 
 ρ = 1.05 ρ = 1.1 ρ = 1.2 

µ 0 0.5 1 2 10 0 0.5 1 2 10 0 0.5 1 2 10 

Strategy 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
DF test 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
DFt test 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 

 


