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• Collaborative recommender systems (CRSs) have become a 
routine activity: 

• Predictions usually based on similarity between neighbours 

• A potential source of frauds and deception 

 Malicious parties want to promote/demote their items of interest 

 Injection of fake user profiles to distort recommendations 

• Only one application domain of intrusion detection problem 

• Datamining widely used to explore useful knowledge from 
larga datasets 

 

Introduction 
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• Association Rule Mining (ARM) 

• A very well-known method for discovering interesting patterns 
and close relations between items 

A → C, A ∩ C = Ø 
 

• Rare Association Rule Mining (RARM) 

• Searches for non-frequent, unusual or exceptional association 
rules by mining rare itemsets 

• Non-ordinary items could help to discover potential intruders 
throughout the dataset maintained by the rating system 

 

• Exhaustive search of the rule space would be non-scalable 
and potentially endless (e.g. Apriori-Inverse, ARIMA, etc) 

 

Introduction 
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The suspicious attacker 
detection process 

Dataset 

• A rating dataset contains uncorrupted user 
preferences per item 

• Each item (e.g. movies) have a numerical 
rating 

• In the example(*), items are rating from 1 to 5 

(*) B. Mobasher et al. “Toward Trustworthy Recommender System: An Analysis of Attack Models and Algorithm Robustness” ACM Trans. Internet Technology, 

7(4)-23, 2007. 
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The suspicious attacker 
detection process 

Dataset 
A1 → C1 

A2 → C2 

    … 

An → Cn 

Rare ARs 

pattern 

extraction 
• For the extraction of frequent ARs 

we proposed an evolutionary 
approach: G3PARM(*)

  

• High efficiency and low memory 
requirements  

• Different types of attributes 

• Based on a context-free grammar 

• Each individual is a derivation tree that 
represents a rule 

• Extension of the G3PARM for RARM 

• Extraction of rare association rules 

• Post-processing step that simplifies 
rules with redundant attributes 

(*) J. M. Luna, J. R. Romero y S. Ventura. G3PARM: A Grammar 
Guided Genetic Programming Algorithm for Mining Association Rules. 
IEEE World Congress on Computational Intelligence (WCCI 2010) 
Barcelona, Spain, 2010  
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The suspicious attacker 
detection process 

Dataset 
A1 → C1 

A2 → C2 

    … 

An → Cn 

Rare ARs 

pattern 

extraction 

Grammar Dataset 

Population Parents 

Auxiliary 

Population 
Offsprings 

Selection 
Crossover 

Mutation 

Update 

Evaluation 

Evaluation 

• It searches for the minimum support for 
each rule by maximizing the fitness 
function: 

 Support of the rule 

 

 

 A support threshold (minimum 
support) 

 

 
 

• Confidence and support of the rule are 
used to update the auxiliary population 
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The suspicious attacker 
detection process 

Dataset 
A1 → C1 

A2 → C2 

    … 

An → Cn 

Rare ARs 

pattern 

extraction 

Two rare rules are mined 
 
Item1 < 3  AND Item2 > 3 → Item6 ≤ 4 

Item3 ≥ 4  AND Item5 > 3 → Item4 < 2 
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The suspicious attacker 
detection process 

Dataset 

DatasetA 

A1 → C1 

A2 → C2 

    … 

An → Cn 

Rare ARs 

attack 

injection 

pattern 

extraction 

With the elapse of time, 

some fraud profiles are 

injected in the dataset 

(three attacks on Item6) 
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The suspicious attacker 
detection process 

Dataset 

DatasetA 

A1 → C1 

A2 → C2 

    … 

An → Cn 

Rare ARs 

Analysis of rating patterns 

attack 

injection 

pattern 

extraction 

• For each rare rule mined: 

• Calculate the relative support of each 
attribute in a rule in the original dataset 

• Again, the relative support is computed 
using the suspicious ratings 

• |Δs| = |s1 – s0| is obtained 

• The probability that an item is attacked: 

 

 
 

Lm: relative support obtained by dividing the absolute 
support by the number of instances (in DatasetA) 

LM: relative support obtained if all the instances of the 
attack injection are satisfied by the attribute of the rule 
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The suspicious attacker 
detection process 

Dataset 

DatasetA 

A1 → C1 

A2 → C2 

    … 

An → Cn 

Rare ARs 

Analysis of rating patterns 

attack 

injection 

pattern 

extraction 

• Pattack indicates whether an item is 

being potentially attacked 

• If Pattack is greater than a threshold, a 

potential attack is considered 
 

• The highest value does not always 
imply an attack 

• Item4 has a Pattack of 40% 
 

• An influence measure is required to 
analyze how effective the attack is. 

 

 
 Δr is the increment of the average score for an item 

before and after the potential attack 
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The suspicious attacker 
detection process 

Dataset 

DatasetA 

A1 → C1 

A2 → C2 

    … 

An → Cn 

Rare ARs 

Analysis of rating patterns 

Extraction of the list of attackers 

DatasetA Dataset’ 

= - 

Attackers 

attack 

injection 

pattern 

extraction 

• A preliminary list of attackers can be 

experimentally built by analyzing 

Pattack and Infl 

• We need to study which new profiles 

satisfy the item (e.g. Item6) 

 

• These profiles (Attackers) are 
removed from the dataset (DatasetA) 

 

• A new iteration would start with the 
elapse of time using Dataset’ 
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• As a dataset, we used the online Jester Online Joke 
Recommender System 

• 4.1 million continuous ratings 

• 100 jokes (i.e. items) 

• 73,421 users (i.e. profiles) 

• Ratings ϵ [-10, 10] 

 

 

• The algorithm configuration 

• Five different executions with five  
 different seeds (150 rules at most) 

Experimentation 
and Results 

Experiment setup 
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Average Attack: 

 (It) Target item  

 (If) Filler items 

 (Iø) Null items 

 

 

 

• We simulated a push attack (promotion of items) based on average ratings 

 

 

 

• Different attacks were injected: 

• 5 different l values (fillers): 20, 30, 40, 50, 60 

• 3 different items promoted with low ratings (joke58, joke74, joke79) 

• Each injection is about 10% the dataset size 

• Pattack >= 0.8 and Pattack >= 0.5 (too low, just for comparison) 

Experimentation 
and Results 

Running the process 
 

Example of rare rule extracted Same rule after normalization 
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• When Pattack = 0.5: 

• New rules containing the target item are found 

• … but more filler items could also be considered as injected 

• The influence measure reveals the real target item   

Experimentation 
and Results 

Pursuing the attackers 

Rules containing the target item, Pattack >= 0.8 Rules containing the target item, Pattack >= 0.5 Rules without the target item, Pattack >= 0.5 

• As an example: 

 An item (Is) was marked as suspicious: Pattack = 0.5 

 However, the target item (It) obtained Pattack = 0.2 

 After measuring the influence: 

 Infl(Is) = -0.006 

 Infl(It) = 0.022 (the biggest value in the dataset) 
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• Concluding Remarks 

 An evolutionary proposal for the detection of malicious 
profile injections in user-based CRSs 

 A variation of the G3PARM algorithm for RARM 

 Introduction of measures for the analysis of rating 
patterns 

 

• Future Work 

 Validate with different types of attacks 

 Reaction in non-simulated environments 

 

Concluding Remarks 
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