
Identification of Potential New Protein Vaccine
Candidates through Pan-Surfomic Analysis of
Pneumococcal Clinical Isolates from Adults
Alfonso Olaya-Abril1, Irene Jiménez-Munguı́a1, Lidia Gómez-Gascón2, Ignacio Obando3,
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Abstract

Purified polysaccharide and conjugate vaccines are widely used for preventing infections in adults and in children against
the Gram-positive bacterium Streptococcus pneumoniae, a pathogen responsible for high morbidity and mortality rates,
especially in developing countries. However, these polysaccharide-based vaccines have some important limitations, such as
being serotype-dependent, being subjected to losing efficacy because of serotype replacement and high manufacturing
complexity and cost. It is expected that protein-based vaccines will overcome these issues by conferring a broad coverage
independent of serotype and lowering production costs. In this study, we have applied the ‘‘shaving’’ proteomic approach,
consisting of the LC/MS/MS analysis of peptides generated by protease treatment of live cells, to a collection of 16
pneumococcal clinical isolates from adults, representing the most prevalent strains circulating in Spain during the last years.
The set of unique proteins identified in all the isolates, called ‘‘pan-surfome’’, consisted of 254 proteins, which included most
of the protective protein antigens reported so far. In search of new candidates with vaccine potential, we identified 32 that
were present in at least 50% of the clinical isolates analyzed. We selected four of them (Spr0012, Spr0328, Spr0561 and
SP670_2141), whose protection capacity has not yet been tested, for assaying immunogenicity in human sera. All of them
induced the production of IgM antibodies in infected patients, thus indicating that they could enter the pipeline for vaccine
studies. The pan-surfomic approach shows its utility in the discovery of new proteins that can elicit protection against
infectious microorganisms.
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Introduction

Streptococcus pneumoniae is a Gram-positive bacterium that can be

found as a commensal in the human respiratory tract and that,

under appropriate conditions, is pathogenic, being able to cause

high morbidity and mortality [1]. This microorganism is a leading

cause of mucosal diseases such as otitis media, sinusitis and

pneumonia and is a prominent pathogen in invasive diseases

including bacteremia, meningitis, and sepsis [2]. Pneumococcal

disease disproportionally affects young children and the elderly

although it may occur in all age groups and with higher frequency

among patients with co-morbid conditions. It has been estimated

that approximately 800,000 children die each year due to

pneumococcal disease and .90% of these deaths occur in

developing countries [3]. Burden of disease due to pneumococcal

diseases, generally related to pneumonia, is also high among adults

in developed countries with around 25,000 deaths per year in the

United States in adults over 50 years of age and significant

mortality and long-term effects on quality of life in European

countries [4,5].

Prevention of pneumococcal disease by immunization has long

been considered a major goal that could help to reduce the burden

of pneumococcal diseases and to control antimicrobial resistance

rates [6,7]. Two types of pneumococcal vaccines are available in

the market, both based on the capsule polysaccharide: pneumo-

coccal purified polysaccharide vaccine and conjugate vaccines, in

which polysaccharides are conjugated to a protein carrier capable

of recruiting CD4+ T-cells, increasing immunogenicity in young

children [8]. The first type is mainly used in adults, covering 23

capsule serotypes (Pneumovax 23V) that represent about 80% of

the most prevalent pneumococcal disease-causing ones in children

and adults in the USA [9]. A pneumococcal conjugate vaccine

covering 7 serotypes (PCV7) was initially licensed for exclusive use

in children, and new vaccines with broader serotype coverage

(10V and 13V) were later developed. The 13-valent pneumococcal

conjugate vaccine (PCV13) has been approved for prevention of

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e70365



invasive disease (FDA and EMEA) and pneumonia (FDA) caused

by PCV13 serotypes among adults aged 50 years and older, and

was recently recommended for adults aged $19 years with

immunocompromising conditions in the United States by ACIP

[10].

Although it seems that Pneumovax-23 protects effectively

against invasive pneumococcal disease (IPD) in healthy adults, its

efficacy in high-risk groups and against other outcomes (pneumo-

nia, mortality) is less clear [1]. In addition, and together with

conjugate vaccines, they present some important limitations [11]:

i) coverage is serotype-dependent, not covering the majority of the

93 capsule serotypes described so far; ii) coverage is designed on

the basis of the most prevalent serotypes identified in developed

countries and may be less effective in developing countries; iii)

vaccine effectiveness may decrease in the long term due to non-

vaccine serotype replacement [12]; iv) high manufacturing

complexity and cost make these vaccines less accessible to

developing countries; and v) genomic factors other than capsular

determinants may modulate virulence, and therefore it has been

suggested that a vaccine based on genetic factors other than

serotype may be necessary especially for otitis media and

nonbacteremic pneumonia [13]. Protein-based vaccines theoret-

ically offer advantages over those based on the capsule polysac-

charides, by allowing them to overcome the previously cited

problems: targeting conserved antigens in a serotype-independent

way, covering a broader pneumococcal biotype population, and

lowering cost of production [14]. Here, surface proteins are ideal

as they have the highest chance of raising an effective immune

response. So far, numerous pneumococcal proteins have shown

protection against infection in animal models, but most of them

are still in clinical trials. Proteomics provides excellent platforms

and strategies to identify in a fast and reliable way the set of

proteins expressed on the surface of pathogenic microorganisms.

To this regard, the ‘‘shaving’’ approach –consisting of treating live

cells with proteases, followed by LC/MS/MS analysis of the

generated peptides– has become a highly valuable tool when

searching for protein vaccine candidates [15,16]. In this study, we

have screened a collection of pneumococcal clinical isolates from

adults by defining its ‘‘pan-surfome’’, (i.e. the whole set of

expressed surface proteins), in order to identify which proteins that

have not been tested so far in animal models for protection against

infection could enter the vaccine pipeline in future studies.

Materials and Methods

Ethics Statement for Human Sera Sampling and Use
This research was performed according to the principles

expressed in the Declaration of Helsinki. All human sera were

obtained from patients .8 years old admitted to Hospital

Universitario Infantil Virgen del Rocı́o (HUIVR) in Seville,

Spain. Sera were drawn either from patients with a diagnosis of

pneumococcal infection, determined by isolation of the microor-

ganism from a sterile site (blood or pleural fluid) according to

standardised protocols or from healthy control children aged .8

years old. All sera from patients were obtained within ten days of

hospital admission. Written informed consent was obtained from

parents or legal guardians of participating children and the

Hospital Universitario Virgen del Rocı́o Ethic Committee

approved the study (code no. 010470, certificate no. 14/2010),

for sera to be used within the project in which this work was

designed.

Bacterial Strains and Growth
The 16 S. pneumoniae strains used in this study isolated from adult

patients corresponded to 9 different capsule serotypes (Table 1).
All the strains were maintained at 280uC, plated on Columbia

blood agar base containing 6% (v/v) sheep blood and grown in a

chemically-defined medium (CDM) [17] supplemented with

20 mg/ml ethanolamine (CDM+EA) as source of aminoalcohol,

at 37uC and 5% CO2 until OD600 of 0.25 (mid-exponential phase)

was reached.

Molecular Genotyping
MLST was performed using standard methodology [18]. In

brief, internal fragments of 7 housekeeping genes (aroE, gdh, gki,

recP, spi, xpt and ddl) were amplified by polymerase chain reaction

and sequenced on each strand. Conventional primers were used,

whose sequences are available at the MLST database (http://

www.mlst.net). Alleles were assigned by comparing the sequence at

each locus to all known alleles at that locus, and the combination

of 7 alleles determined the sequence type (ST). Allele and ST

designations were made using the MLST website, hosted at

Imperial College London, and funded by the Wellcome Trust.

‘‘Shaving’’ of Live Pneumococcal Cells with Trypsin
Generation and recovery of tryptic peptides from ‘‘shaved’’ cells

was carried out as described in [19] without modifications. Briefly,

100 ml of cultures were centrifuged at 3,5006g for 10 min at 4uC,

and the pelleted bacteria washed twice with PBS. Cells were

resuspended in one-hundredth volume of PBS/30% sucrose

(pH 7.4). Tryptic digestions were performed with 5 mg trypsin

(Promega) for 30 min at 37uC. The digestion mixtures were

centrifuged at 3,5006g for 10 min at 4uC, and the supernatants

(the ‘‘surfomes’’ containing the peptides) were filtered using 0.22-

mm pore-size filters (Milipore). Surfomes were re-digested with

2 mg trypsin overnight at 37uC with top-down agitation. Salts were

removed prior to analysis, using Oasis HLB extraction cartridges

(Waters). Peptides were eluted with increasing concentrations of

acetonitrile/0.1% formic acid, according to manufacturer’s

instructions. Peptide fractions were concentrated with a vacuum

concentrator (Eppendorf), and kept at 220uC until further

analysis.

LC/MS/MS Analysis
All analyses were performed with a Surveyor HPLC System in

tandem with an LTQ-Orbitrap mass spectrometer (Thermo Fisher

Scientific, San Jose, USA) equipped with nanoelectrospray

ionization interface (nESI), as described [19]. The separation

column was 150 mm60.150 mm ProteoPep2 C18 (New Objec-

tive, USA) at a postsplit flow rate of 1 ml/min. For trapping of the

digest a 5 mm60.3 mm precolumn Zorbax 300 SB-C18 (Agilent

Technologies, Germany) was used. One fourth of the total sample

volume, i.e. 5 ml, was trapped at a flow rate of 10 ml/min for 10

minutes and 5% acetonitrile/0.1% formic acid. After that, the

trapping column was switched on-line with the separation column

and the gradient was started. Peptides were eluted with a 60-min

gradient of 5–40% of acetonitrile/0.1% formic acid solution at a

250 nl/min flow rate. All separations were performed using a

gradient of 5–40% solvent B for 60 minutes. MS data (Full Scan)

were acquired in the positive ion mode over the 400–1,500 m/z

range. MS/MS data were acquired in dependent scan mode,

selecting automatically the five most intense ions for fragmenta-

tion, with dynamic exclusion set to on. In all cases, a nESI spray

voltage of 1.9 kV was used.

Pansurfome of Adult Pneumococcal Clinical Isolates
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Protein Identification by Database Searching
Tandem mass spectra were extracted using Thermo Proteome-

Discoverer 1.0 (Thermo Fisher Scientific). Charge state deconvo-

lution and deisotoping were not performed. All MS/MS samples

were analyzed using Sequest (Thermo Fisher Scientific, version

v.27), applying the following search parameters: peptide tolerance,

10 ppm; tolerance for fragment ions, 0.8 Da; b- and y-ion series;

oxidation of methionine and deamidation of asparagine and

glutamine were considered as variable modifications; maximum

trypsin missed cleavage sites, 3. The raw data were searched

against an in-house joint database containing the protein

sequences from all the sequenced and annotated S. pneumoniae

strains available at the NCBI ftp site. Peptide identifications were

accepted if they exceeded the filter parameter Xcorr score vs

charge state with SequestNode Probability Score (+1 = 1.5,

+2 = 2.0, +3 = 2.25, +4 = 2.5). With these search and filter

parameters, no false-positive hits were obtained. For proteins

identified from only one peptide, fragmentations were checked

manually. Strain R6 was used as reference for providing the

accession numbers of the identified proteins; whenever a protein

belonging to another strain was found, homology with a

corresponding protein of strain R6 was given by using protein-

BLAST. If homology with R6 or TIGR4 proteins was not

observed, then the protein accession numbers of the other strains

were used.

Bioinformatic Prediction of Protein Subcellular
Localization

Primary predictions of subcellular localization were assigned by

using the web-based algorithm LocateP (http://www.cmbi.ru.nl/

locatep-db/cgi-bin/locatepdb.py). They were contrasted by sev-

eral feature-based algorithms: TMHMM 2.0 (http://www.cbs.dtu.

dk/services/TMHMM-2.0) for searching transmembrane helices;

SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP) for type-I

signal peptides: those proteins containing only a cleavable type-I

signal peptide as featured sequence were classed as secreted; LipoP

(http://www.cbs.dtu.dk/services/LipoP) for identifying type-II

signal peptides, which are characteristic of lipoproteins. Topolog-

ical representations of membrane proteins were performed with

the web-based TOPO2 software (http://www.sacs.ucsf.edu/

TOPO2/). GO annotations were retrieved from the UniProt

Knowledgebase (http://www.uniprot.org/).

Western Blot Analysis
Immunoreactivity of pneumococcal proteins was performed by

Western blotting. 2 mg of pneumococcal recombinant proteins

Spr0328 and Spr0561, 5 mg of pneumococcal recombinant

proteins Spr0012, Spr0121, and SP670_2141 (produced as

GST-tag recombinant fragments using the pSparkH vector,

Canvax Biotech, Córdoba, Spain, and expressed in E. coli BL21.

See Dataset S1 for further details), 1 mg trypsin (Promega) as

negative control, and 1 mg of total protein extract of pneumococ-

cus as positive control were separated by 12% SDS-PAGE gels

and transferred to nitrocellulose membranes (Life Sciences). Non-

specific sites were blocked by incubation with 5% non-fat milk in

T-TBS for 1 h. After two washes with T-TBS, a second 1-h

incubation of the membranes with patient sera, diluted 1:100 in T-

TBS for IgG detection and 1:1,000 for IgM detection, was carried

out. Interference of IgG antibodies in IgM detection was avoided

using GullSORB TM (Meridian Bioscience, Inc.), according to

manufacturers’ instructions. Secondary antibodies consisted of

rabbit anti-human IgG or rabbit anti-human IgM conjugated to

horseradish peroxidase (Sigma), diluted 1:5,000 or 1:2,500 in TBS,

respectively, for 1 h. Then, the membranes were washed three

times with TBS and developed with ECL Plus Western Blotting

Dectection System (GE Healthcare) according to the manufactur-

er’s instructions.

Results and Discussion

We analyzed 16 clinical isolates collected from adult patients

with invasive pneumococcal disease (IPD). Nine different serotypes

were identified. These serotypes included the five most prevalent

ones found in IPD among older people in Spain during the most

recent years (19A, 3, 7F, 14 and 1), serotypes 9V and 19F that had

been circulating significantly in this population in pre- and post-

PCV7 periods, as well as serotypes 8 and 12F that were generally

restricted to adults and with epidemic potential [20,21]. We

genotyped all clinical isolates by MLST, because genetic diversity

of pneumococcal surface proteins depends on non-capsular

genomic background. Fifteen clonal types were found including

several major global clones recognized by the Pneumococcal

Molecular Epidemiology Network (PMEN) (http://www.sph.

emory.edu/PMEN) and genetically related genotypes as shown

in Table 1. The most relevant among them were: ST156 (Spain9V-

3), one of the most successful clones worldwide that has been

especially responsible for the expansion of serotype 14 in IPD in

various countries during recent years [22]; ST306 (Sweden1-28), a

highly circulating genotype associated with the increase in the

incidence of pleural empyema in children and adults in the last

Table 1. Sequence types (STs) and serotypes among 16
Streptococcus pneumoniae invasive isolates recovered from
adult patients.

Isolate ST
Allelic profile
(MLST)* Serotype PMEN clone**

1 2480 12,8,4,5,18,58,18 9V

2 191 8,9,2,1,6,1,17 7F Netherlands7F-39

3 191 8,9,2,1,6,1,17 7F Netherlands7F-39

4 162 7,11,10,1,6,8,14 14 SLV-Spain9V-3***

5 228 12,8,1,5,17,4,20 1

6 433 1,1,4,1,18,58,17 19A

7 306 12,8,13,5,16,4,20 1 Sweden1-28

8 289 16,12,9,1,41,33,33 5 Colombia5-19

9 7340 2,5,36,12,17,21,271 8

10 1201 1,5,1,12,17,3,8 19A

11 156 7,11,10,1,6,8,1 14 Spain9V-3

12 180 7,15,2,10,6,1,22 3 Netherlands3-31

13 53 2,5,1,11, 16,3,14 8

14 557 7,11,10,1, 6,58,1 9V SLV-Spain9V-3***

15 1223 16,12,9,1,6,33,33 5 SLV-Colombia5-19***

16 989 12,5,89,8,6,112,14 12F

*Allelic profiles for each gene in multilocus sequence typing (MLST) are
presented in the following order: aroE, gdh, gki, recP,spi, xpt and ddl.
**PMEN clones are global clones recognized by pneumococcal molecular
epidemiology network.
***SLV = single locus variant (i.e. differs at only one MLST locus and thus is a
closely-related genotype).
doi:10.1371/journal.pone.0070365.t001
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decade [23,24]; ST289 (Colombia5-19), a highly relevant genotype

identified in IPD both in developing and developed countries and

associated with major local geographical outbreaks [25,26]; ST180

(Netherlands3-31), most commonly found clonal type in serotype 3

that is associated to increased risk of mortality in pneumococcal

pneumonia [27,28]; and finally, ST191 (Netherlands7F-39), the

dominant clonal type associated to the emerging serotype 7F

during the post-PCV7 period [29].

Interaction between cells and their environment is critically

mediated by surface proteins. In the case of pathogenic bacteria,

these molecules are often virulence factors or responsible for

pathogenesis. Since they also interact with the immune system,

many of them are highly immunogenic and are thus ideal targets

for novel vaccine discovery and development [30]. Protein-based

vaccines composed of a unique antigen or a combination of them

in a single formulation, may overcome the challenges remaining

with polysaccharide-based vaccines, such as serotype replacement

and high cost, thus making prophylaxis more affordable for

resource-limited populations [11].

To this regard, proteomics has been revealed as the best means

for high-throughput screening of large amounts of proteins for any

biological purpose, and in particular for defining the set of surface-

expressed proteins on a given organism. Several proteomic

analyses have been carried out on the pneumococcus, targeting

either the membrane fraction [31–33] or the cell wall-attached

proteins [34,35], but these biochemical fractionation-based

methods have several limitations: they are relatively slow,

membrane proteins are not always well resolved in polyacrylamide

gels and topology information is lost [19,36]. The ‘‘shaving’’

approach has become a powerful way to identify the set of surface

proteins expressed on a given organism (the ‘‘surfome’’), most of

which are normally highly immunogenic as shown by different

immunochemical techniques [15,16,37], and provides new candi-

dates that elicit protective activity against infection [38]. We have

previously set up this strategy in the pneumococcus [19], showing

that the procedure enables to define the ‘‘pan-surfome’’ of a

collection of clinical isolates, in order to select common proteins to

all or most strains [37,39].

We applied the optimized ‘‘shaving’’ protocol for pneumococ-

cus to the collection of adult clinical isolates, growing cells in a

chemically-defined medium with ethanolamine (CDM+EA) and

digesting them with trypsin for 30 min at 37uC. As already

described by our group [19], we have compared the efficiency of

the ‘‘shaving’’ procedure in different culture media. In the

complex Todd-Hewitt broth, 44 surface proteins were identified

at the described trypsin digestion conditions, compared to 32

found in CDM+EA; however, a higher percentage of cytoplasmic

proteins was found in THB than in CDM+EA (83% vs 61%).

Moreover, these differences were even higher when considering

identified peptides (in THB, only 15% corresponded to surface

Figure 1. Pan-surfomic analysis of pneumococcal adult clinical isolates. A) Yield of surface protein identification after trypsin treatment in
each of the 16 analyzed isolates. B) Subcellular localization of the predicted surface proteins, according to LocateP (TMD: transmembrane domain). C)
Gene Ontology annotations of the biological functions of the identified surface proteins. Numbers in panels B and C represent the proteins belonging
to each category.
doi:10.1371/journal.pone.0070365.g001
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proteins, whereas in CDM+EA this percentage was 43%). A total

of 254 surface proteins were identified in the set of the 16 isolates

(Table S1 and Datasets S2 and S3), and the yields of surface

protein identification ranged between 20% and 40%, approxi-

mately (Figure 1A). Within the different categories of surface

proteins recognized for Gram-positive bacteria, and particularly

Table 2. Identification of protective protein antigens against Streptococcus pneumoniae infection already described in literature.

Protein family Antigen Locus Location References Found in # strains

Choline-binding proteins PspA spr0121 1TMD [53] 14/16

CbpA (PspC) spr1995 Secreted [41] 16/16

PcpA spr1945 Secreted [45] 5/16

LytA spr1754 Cytoplasmic [47] 3/16

LytB spr0867 .1TMD [52] 7/16

Toxins Ply spr1739 Cytoplasmic [40] 6/16

Sortase and sortase-
dependent proteins

SrtA spr1098 1TMD [44] 4/16

RrgA SP_0462 Cell Wall [43] 0/16

RrgB SP_0463 Cell Wall [43] 0/16

RrgC SP_0464 Cell Wall [43] 0/16

NanA spr1536 Cell Wall [48] 13/16

SphtrA spr2045 1TMD [52] 11/16

ABC transporter proteins PiaA (ABC-SBP) spr0934 Lipoprotein [46] 2/16

PiuA (fecE) spr1686 Cytoplasmic [46] 2/16

PsaA spr1494 .1TMD [51] 2/16

PotD spr1243 1TMD [50] 1/16

sp0148 (ABC-SBP) spr0146 Lipoprotein [49] 5/16

Enzymatic proteins ClpP spr0656 Cytoplasmic [42] 1/16

StkP spr1577 1TMD [54] 1/16

FBA spr0530 Cytoplasmic [34] 13/16

gapA spr1825 Cytoplasmic [34] 16/16

eno spr1036 Cytoplasmic [56] 16/16

tig spr0362 Cytoplasmic [56] 9/16

ldh spr1100 Cytoplasmic [56] 11/16

pykF spr0797 Cytoplasmic [56] 15/16

pgk spr0441 Cytoplasmic [56] 15/16

gnd spr0335 Cytoplasmic [34] 13/16

Histidine triad proteins PhtA spr1061 Lipoprotein [55] 6/16

PhtB spr1060 Lipoprotein [55] 9/16

PhtD spr0907 1TMD [55] 14/16

PhtE spr0908 Secreted [55] 10/16

Others PcsB spr2021 Secreted [54] 12/16

PppA spr1430 Cytoplasmic [59] 6/16

PpmA (PrsA) spr0884 Lipoprotein [62] 8/16

SlrA spr0679 Cytoplasmic [60] 11/16

AmiA spr1707 Lipoprotein [61] 5/16

AliB spr1382 Lipoprotein [61] 9/16

AliA spr0327 Lipoprotein [61] 7/16

PfbB spr0075 Cell Wall [63] 8/16

PsrP sp_1772 Cell Wall [64] 0/16

spr0785 spr0785 Cytoplasmic [49] 1/16

spr1176 spr1176 Cytoplasmic [58] 1/16

spr2010 spr2010 .1TMD [58] 1/16

spr1875 spr1875 1TMD [57] 8/16

doi:10.1371/journal.pone.0070365.t002
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for streptococci, most of them (114+64 = 178, i.e. 70%) had some

transmembrane domain, 24 (9.4%) were predicted by LocateP as

secreted, 35 (13.8%) as lipoproteins and 17 (6.7%) as possessing an

LPXTG-anchoring motif to the cell wall (Figure 1B). Figure 1C
shows the GO annotations according to their biological function,

with a high number of proteins with unpredicted functions, which

make them highly interesting for further studies on molecular

characterization, participation in virulence or pathogenesis, or

assay of protection activity.

The ‘‘shaving’’ approach has already demonstrated its power

for identifying most of the previously discussed protective protein

antigens in other streptococcal species, even when the number of

clinical isolates used is low [15,16]. Our pan-surfomic analysis

included 40 out of the 44 proteins that have shown to induce

protection against pneumococcal infection [34,40–64] (Table 2).

Among these proteins, 13 are predicted as cytoplasmic. Although

many proteins pertaining to this category have been reported both

to be surface-located and to induce protection, the targets of our

analysis were those ones for which subcellular localization

algorithms predicts undoubtedly to be exported outside the cell.

Interestingly, we identified in a high proportion of clinical isolates

some of the best candidates described so far: the membrane

protein PspA [53] and the predicted extracellular proteins CbpA

[41] and PcsB [54]. Three out of the four protective antigens not

detected in our study were the pilin proteins RrgA, RrgB and

RrgC. Previous works have shown that Gram-positive pilus

subunit proteins are resistant to trypsin treatment [65], and

proteolysis with a non-specific protease such as proteinase K is

required to identify them [15,16,66,67].

To be considered as a promising vaccine candidate, a given

protein should ideally be surface-exposed, highly expressed, and

distributed as widely as possible [36] in order to overcome the

limitations of serotype-dependent polysaccharide vaccines [14].

However, experimentally identifying a high number of proteins

common to all the analyzed strains, can be a hard task. Actually,

Dreisbach et al. found in Staphylococcus aureus that only 7 proteins

(less than 10% of total identified) were common to the 4 isolates

analyzed [39]. We have reported very similar results in a low

number of pneumococcal strains (12 proteins, i.e. 10.5% of total,

in 5 isolates). But, as the number of analyzed isolates increases, the

probability of finding some proteins common to all of them

diminishes. In fact, we did not find any common protein to the 39

Streptococcus suis clinical isolates in a recent report [37]. In the

search for pneumococcal surface proteins to be proposed as

potential new vaccine candidates, we established a threshold for

the presence of a protein in at least 50% of the analyzed clinical

isolates; otherwise, a very stringent criterion would lead us to

identify the already described protective antigens. Thus, 32

proteins surpassed this threshold (Table 3). As expected, cell

wall-anchored, for which 10 proteins were identified, was the

category of surface proteins with the highest number of items

above this limit. Spr0075 was just identified in 50% of the isolates;

the other 9 cell-wall proteins were present in $11 strains. Three

lipoproteins were also found according to the selected criterion,

including the protective antigens PhtD and AliB (see Table 3), as

well as 7 proteins with one transmembrane domain (that included

protective antigens PspA and Spr1875) and other 7 proteins with

more than one transmembrane helix. Finally, 5 predicted proteins

to be secreted to the extracellular milieu were also found, including

the highly protective candidates CbpA and PcsB (annotated in the

R6 genome as Spr2021). As cell-wall proteins with the LPXTG-

anchoring motif are those most protruding and exposed on the

streptococcal surface [68], they are expected to be found most

frequently within a collection of clinical isolates. Actually, we have
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reported very similar results in the pan-surfome of 39 S. suis clinical

isolates, where 13 cell wall proteins (out of 17 identified, and out of

20 predicted in the database used) were identified in $50% of

strains [37].

Although predicted membrane proteins (i.e. those with $1

transmembrane domain) are normally the most abundant surface

protein group identified in ‘‘shaving’’ experiments, they represent

the lowest percentage compared to the corresponding total

number of predicted proteins in databases, compared to the other

groups [15,16,69]. Cell-wall anchored, secreted proteins and

lipoproteins are completely surface-exposed, except some small

regions embedded within the cell wall and/or the capsule.

Therefore, any portion of them would be a priori good for cloning

in order to produce recombinant fragments for vaccine testing (in

the case they were too large to select the whole sequence).

However, membrane proteins are theoretically more embedded

under the surface, and therefore their extracellular domains are

less exposed. In addition, those with more than one transmem-

brane domain are generally dificult to obtain in a recombinant

way, because of solubility problems. The best strategy to use them

in protection assays would consist of selecting those domains that

are experimentally confirmed to be surface-accessible. Figure 2
shows the peptides identified after LC/MS/MS analysis over the

topology predictions for the corresponding sequences of the 14

Figure 2. Topology representation of the predicted membrane proteins in the ‘‘pan-surfome’’ of the 16 S. pneumoniae clinical
isolates that have been identified in at least 50% of the analyzed strains. The TMHMM algorithm was used to predict transmembrane
domains (TMD) and signal peptides after prediction of subcellular localization by LocateP. In red are shown the peptides experimentally identified by
LC/MS/MS. A) Proteins with only one predicted TMD. B) Proteins with more than one TMD.
doi:10.1371/journal.pone.0070365.g002
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membrane proteins shown in Table 3. For 9 proteins, experi-

mental assignments of identified peptides were in agreement with

the predicted topologies (i.e. peptides corresponded to extracellu-

lar domains). However, for the other 5 proteins (Spr0086,

Spr0334, Spr0907, Spr1370 and Spr2045), discrepancies were

observed, as we identified peptides belonging to predicted

cytoplasmic domains. These disagreements have also been

reported in other works [16,69,70], although in S. pyogenes it has

been experimentally demonstrated by flow cytometry assays that

some of these predicted cytoplasmic domains are actually surface-

located [16], thus showing that prediction algorithms do not

always correctly predict the topology of all the membrane proteins.

Moreover, a deeper view on the identified peptides for each

individual isolate may provide ‘‘hot zones’’ (i.e. those identified in

many strains) that might be best for selection of cloning fragments,

in case of very large proteins (Dataset S4).

Finally, we evaluated the power of ‘‘pan-surfomics’’ for the

selection of protein antigens with vaccine potential, by measuring

the immunoreactivity in sera from infected patients. Thus, we

selected five proteins from those identified in common in at least

50% of the isolates, and performed a Western-blot analysis to

detect both IgG and IgM reaction. Of these proteins, four had not

previously been assayed for protection. We also selected PspA

(Spr0121), whose protection capacity against infection is well

known [53], to validate the utility of this approach. As a positive

control, we used a total protein extract from pneumococcus, and

as a negative control, commercially available trypsin. As shown in

Figure 3, IgG antibodies were raised against the five proteins,

even in the three sera used as healthy controls, which might be due

to previous asymptomatic pneumococcal colonization. Regarding

IgM response, two out of the three patients raised these antibodies

against the five selected proteins; the other patient (patient #1)

produced IgM antibodies against three proteins (Spr0121,

Spr0328 and Spr0561). The three healthy donors raised IgM

antibodies against Spr0561. In addition, control #3 showed anti-

Spr0012 IgM antibodies. As observed in the figure, both the IgG

and IgM responses against Spr0561 were very intense, which

could mean that it is strongly immunogenic. This high immuno-

genicity, which may be due to its highly surface exposure and size

(it is a 2,144-amino acid cell-wall protein) could be also responsible

for the presence of IgM antibodies in healthy donors if they had

been previously colonized by pneumococcus.

We have previously shown the utility of the detection of

immunoreactivity against selected surface proteins for the discov-

ery of diagnostic biomarkers of infection both in children and in

adults [19]. In that study, we demonstrated that five known

protective antigens raised antibodies in convalescent patients. In

addition, a cell-wall protein, the alkaline pullulanase PulA, not

previously tested at protection level, was shown to induce antibody

response. Here we show the potential of four novel surface

proteins (Spr0012, Spr0328, Spr0561 and SP670_2141) for

vaccine testing, because of their capacity to raise immune response

in infected patients. As expected, an IgM response against most of,

or all the selected proteins, was obtained in the infected patient

sera (2 out of 3), but much less in the control individuals (as stated

above, only against Spr0561 in the three healthy donors and

against Spr0012 in control #3). On the contrary, the five proteins

induced IgG production both in the infected and the control

people. The detection of IgG antibodies in healthy, control

individuals may be explained by non-symptomatic carriage, which

can mask a true discrimination among markers of disease.

Therefore, IgM detection should be a priori a better indicator of

antigen exposure. However, the lower levels of these antibodies

make them more difficult to detect, and factors such as timing in

taking the samples may represent some limitations [71]. More

sensitive, large scale formats for IgM-based protein antigen

detection are needed, as customized protein chips or Luminex

assays.

In conclusion, this study shows the utility of pan-surfomic

approach in the high-trhoughput screening of proteins that could

enter the pipeline for new vaccine discovery. The selection of the

candidates from the proteomic analysis must be complemented

with immunogenicity studies to determine the capacity of such

proteins to raise an effective immune response. Further research is

needed to test the protection capacity of the proposed proteins in

animal models of infection, either individually or as ‘‘antigen

cocktail’’ formulations. Although the main application field of such

an approach is the discovery of new protein vaccines, the

development of serological tools for detecting diagnostic biomark-

ers, and/or the application in programs of epidemiological

surveillance, is also very promising, especially if large-scale formats

(protein arrays, Luminex assays) are set up.

Figure 3. Western blot analysis of five selected surface proteins against human sera. Detection of both IgG (left) and IgM (right) was
carried out. In all the cases, antibody reaction was observed against the positive control (pneumococcal protein extract; see Materials and Methods
for further details), and no reaction against the negative control (trypsin; see Materials and Methods for further details).
doi:10.1371/journal.pone.0070365.g003
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Supporting Information

Table S1 Surface proteins identified in the 16 Streptococcus

pneumoniae clinical isolates analyzed. Shown are the locus

numbers, gi accession numbers, protein function descriptions,

subcellular localization according to LocateP, presence of the

proteins in each isolate, and number of isolates in which each

protein has been found.

(XLSX)

Dataset S1 Recombinant fragments produced in this work from

the selected gene products. In gray are highlighted the sequences

amplified (from the corresponding genes) and produced as

recombinant polypeptides (from the corresponding amino acid

sequences). Number of nucleotides amplified and amino acids

expressed are indicated for each protein, as well as primers used

for DNA amplification.

(PDF)

Dataset S2 Sequest raw data of protein and peptide identifica-

tions for S. pneumoniae clinical isolates 5074-5, 5104-8, 5231-9V,

5278-14, 5284-9V, 5330-7F, 5333-19A and 5334-8. Each isolate’s

data are given separately in one or more datasheets.

(XLS)

Dataset S3 Sequest raw data of protein and peptide identifica-

tions for S. pneumoniae clinical isolates 5335-5, 5337-7F, 5341-1,

5342-3, 5343-14, 5344-19A, 5345-1 and 5431-12F. Each isolate’s

data are given separately in one or more datasheets.

(XLS)

Dataset S4 Representation of the sequences identified belonging

to membrane proteins over the 50% threshold (see Table 3), and

their frequency in the ‘‘pan- surfome’’ of the 16 Streptococcus

pneumoniae clinical isolates analyzed.

(PDF)
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Epidemiology of invasive pneumococcal disease in older people in Spain (2007–

2009): implications for future vaccination strategies. PLoS One 7: e43619.

21. Hausdorff WP, Feikin DR, Klugman KP (2005) Epidemiological differences

among pneumococcal serotypes. Lancet Infect Dis 5: 83–93.
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