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most of which have been previously considered in the detection of warning sig-13

nals of critical transitions. Experimental results show that the proposed approach14

applied to paleoclimate data could effectively analyse Dansgaard-Oeschger (DO)15

events and uncover commonalities and differences in their statistical and possibly16

their dynamical characterisation. In particular, warning signals were robustly de-17

tected in the GISP2 and NGRIP δ18O ice core data for several DO events (e.g. DO18

1, 4, 8 & 12) in the form of an order of magnitude increase in variance, autocor-19

relation and mean square distance from a linear approximation, the mean square20

error. The increase in mean square error, suggesting nonlinear behaviour, has been21

found to correspond with an increase in variance prior to several DO events for22

∼90% of the algorithm runs for the GISP2 δ18O dataset and for ∼100% of the23

algorithm runs for the NGRIP δ18O dataset. The proposed approach applied on24

both model output and paleoclimate datasets provides a novel visualisation tool25

of climate time series analysis.26

Keywords Warning Signals · Time series Segmentation · Tipping Points ·27

Abrupt Climate Change · Genetic Algorithms · Clustering28

1 Introduction29

The statistical tools used to extract knowledge from time series analysis have un-30

dergone considerable development during the past decade (see Livina and Lenton,31

2007; Livina et al., 2011; Lenton et al., 2012; Scheffer et al., 2009; Dakos et al.,32

2008; Held and Kleinen, 2004; Cimatoribus et al., 2013). Driven by the ultimate33

aim of understanding past climate variability, the above studies focused on statis-34

tical analysis of time series that demonstrate threshold behaviour as used in Alley35
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et al. (2003). Candidate explanations for transitions of a system over thresholds36

link to dynamical systems analysis, which is used for gaining insight into internal37

variability modes and response to external forcing on both simple and complex38

systems (Saltzman, 2001). Adopting the notation from Ashwin et al. (2012) the39

abrupt shift from a stable state to another stable state could be e.g. due to B-40

tipping or N-tipping. In B-tipping the system is driven past bifurcation points,41

where equilibrium solutions loose their stability past a critical value with respect42

to a control parameter (Saltzman, 2001). In N-tipping, noise fluctuations of a fast43

component affect a slower variable pushing the system away from the neighbour-44

hood of an attractor to that of another one (Hasselmann, 1976). Those are only45

two of the candidate explanations of tipping points; combined with the fact that in46

open systems subject to internal and external forcings such as the climate system47

both dynamical behaviours can take place (Ashwin et al., 2012), attributing causal48

relations to abrupt transitions with certainty is a challenging task. Therefore, sta-49

tistical analysis is required to complement the mapping of the variability before50

tipping points. To reveal additional properties of the system, sophisticated tools51

have been developed for statistical monitoring of its evolution.52

One of the most studied paleoclimate proxy data series that demonstrates53

tipping behaviour is the oxygen isotope δ18O of the Greenland ice cores ranging to54

more than 100,000 years before today (Svensson et al., 2008). Abrupt transitions55

can be seen in this time series, that correspond to Dansgaard-Oeschger (DO)56

events. DOs consist of sudden warming in Greenland followed by gradual cooling.57

The last of those warmings is called the Younger Dryas event, and marked the58

transition to today’s warm climate (Alley et al., 2003).59
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By focusing on a single transition event, the work of Dakos et al. (2008) drew60

attention on bifurcation points and their precursors as they could identify slow-61

ing down as an early warning signal (EWS) before the Younger Dryas period.62

In particular, the increase in autocorrelation within a fixed sliding window as63

wide as half the record length was found to precede the transition. Ditlevsen and64

Johnsen (2010) brought forward that the fluctuation-dissipation theorem from65

Kubo (Kubo, 1966) imposes both increasing autocorrelation and variance before66

crossing a bifurcation. Cimatoribus et al. (2013) suggested preprocessing or filter-67

ing the raw proxy data in order to infer novel diagnostics, such as the Detrended68

Fluctuation Analysis (DFA) coefficient. Based on that indicator Livina and Lenton69

(2007) have measured the proximity of a system to a tipping point not in units of70

critical parameter difference, but by monitoring the evolution of the DFA propaga-71

tor. Held and Kleinen (2004) proposed the method of degenerate fingerprinting and72

hypothesized the system as an auto-regressive process with lag-1 autocorrelation,73

considering only exponentially decaying modes and white noise in the dynamics of74

the system. Rahmstorf (2003) tried to automatize the characterization of the DO75

events by introducing an event detection algorithm based on the slope of the data76

curve within time intervals of 200 years. The study failed to detect certain DO77

events because of the different time scales within which each DO event developed.78

From the above studies the statistical quantities of variance and lag-1 autocorre-79

lation were pointed out as early warning indicators of critical transitions and the80

slope within a fixed time interval was found to characterise most of the DO events.81

In this paper, a time series segmentation algorithm combining a genetic algo-82

rithm and a clustering technique is proposed to address the existence of EWSs be-83

fore tipping points in climate time series. Starting from a random division pattern84

https://www.researchgate.net/publication/228880431_Detection_of_climate_system_bifurcations_by_degenerate_fingerprinting?el=1_x_8&enrichId=rgreq-f8ab8fcde812ae0041984e84a565bfe7-XXX&enrichSource=Y292ZXJQYWdlOzI2OTkzMDYzNjtBUzoxOTA4ODE3MjgzOTMyMTlAMTQyMjUyMTE1ODUxOQ==
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the different segments within the time series are classified according to similarities85

in their statistical parameters (including variance, lag-1 autocorrelation and slope;86

as considered in previous works). The algorithm is then evolved by renewing its87

segmentation pattern at each iteration in a process called genetic evolution. to88

optimize the class label assigned to each segment, where algorithm operators are89

applied and the best-fitted individuals are selected. By keeping intact the seg-90

ments that group well in statistical similarity and rearranging those that were far91

from any of the groups, the iteration converges to a final pattern of division of92

the time series, providing as output the data regions that have common charac-93

teristics. No prior knowledge of the tipping point locations are supplied to the94

algorithm. The goal of the algorithm is to provide a more compact representation95

of time series while keeping high the number of statistical parameters employed.96

The time series segmentation problem has been widely studied within various dis-97

ciplines. For example, such algorithms have been successfully applied in phoneme98

recognition (Xiong et al., 1994; Prandom et al., 1997), paleoecological problems99

(Bennett, 1996), telecommunication applications (Himberg et al., 2001) or finan-100

cial problems (Tseng et al., 2009). For an excellent review of the field see Keogh101

et al. (2001). Furthermore the interest in GAs applied to climate tipping points is102

rising, e.g. Lenton et al. (2009) used a GA to tune 12 physical parameters of an103

Earth System Model to study the tipping of the Atlantic thermohaline circulation104

following a multi-objective optimization method.105

The layout of the paper is as follows. Section 2 introduces the segmentation106

algorithm with a detailed description of the embedded genetic algorithm, the six107

statistical metrics and the clustering process. Section 3 presents the synthetic and108

paleoclimate datasets used in this study and the algorithm parameters. Section109

https://www.researchgate.net/publication/223260816_Cluster-based_genetic_segmentation_of_time_series_with_DWT?el=1_x_8&enrichId=rgreq-f8ab8fcde812ae0041984e84a565bfe7-XXX&enrichSource=Y292ZXJQYWdlOzI2OTkzMDYzNjtBUzoxOTA4ODE3MjgzOTMyMTlAMTQyMjUyMTE1ODUxOQ==
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4 presents the main results of the segmentation algorithm on the paleoclimate110

and synthetic datasets, the latter used to analyse the algorithm’s capabilities in111

a controlled environment. Section 5 discusses the results from the point of view112

of dynamical system theory in addition to possible limitations of the algorithm.113

Finally section 6 reviews the main findings of this paper.114

2 Segmentation Algorithm115

2.1 General overview of the segmentation algorithm116

This paper proposes a novel Genetic Algorithm (GA) from the field of time series117

segmentation (see Sclove, 1983; Himberg et al., 2001; Keogh et al., 2001; Chung118

et al., 2004). The general objective of the GA is to identify segments with com-119

mon characteristics by applying a label to these segments. In practice this means120

finding the cutpoints of the different segments to be discovered together with their121

class labelling. As in traditional GAs, the proposed approach considers a popu-122

lation of candidate solutions representing different possible segmentations which123

are evolved towards better segmentation solutions. Each individual is represented124

by an array of integer values (chromosome representation) which can be mutated125

and recombined. The evolution starts from a population of randomly generated126

segmentations. After that, every segment in every chromosome is categorized using127

six statistical metrics, most of which were previously considered in climate tipping128

point research (including variance, autocorrelation, and skewness). The clustering129

technique is then applied over this six-dimensional space for every chromosome us-130

ing the k-means clustering algorithm (MacQueen et al., 1967) and a fitness value131

is assigned to every chromosome according to the degree of homogeneity of the132



Detection of warning signals for abrupt climate change using a GA 7

segments with respect to their centroids (i.e. the mean value of each cluster). A133

class label is assigned during the clustering process. After that, different mutation134

and crossover operators are applied to explore the search space. This procedure is135

repeated during n generations. The final mathematical goal of the proposed GA136

is to minimize the distance of each segment to its centroid in the six-dimensional137

space where the six dimensions are statistical properties of each segment.138

The time series segmentation algorithm presented in this paper features the139

following characteristics:140

– A class label is assigned to the different segments via the combination of the GA141

with the clustering technique; traditional approaches would only provide the142

segmentation points (Sclove, 1983; Himberg et al., 2001; Keogh et al., 2001).143

This is specially useful for finding common patterns arising in the climate144

datasets.145

– Apart from the determination of the cutpoints (ti, i = 1, . . . ,m− 1), the main146

idea is that of transitions between classes. The analysis of these transitions147

is crucial to the detection of EWSs, as it indicates changes in the statistical148

parameters.149

– Each segment is represented by a six-dimensional vector where the dimensions150

are the six statistical metrics, some of which have been previously considered in151

the detection of EWSs of critical transitions (Cimatoribus et al., 2013; Dakos152

et al., 2008, 2012).153

– Instead of representing the time series evolution by plotting one of its metrics as154

done in previous works, the approach proposed in this paper allows to visualise155

https://www.researchgate.net/publication/3940200_An_Online_Algorithm_for_Segmenting_Time_Series?el=1_x_8&enrichId=rgreq-f8ab8fcde812ae0041984e84a565bfe7-XXX&enrichSource=Y292ZXJQYWdlOzI2OTkzMDYzNjtBUzoxOTA4ODE3MjgzOTMyMTlAMTQyMjUyMTE1ODUxOQ==
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several metrics simultaneously and to compare several sections of the time156

series to find common patterns.157

– The proposed algorithm finds automatically the length of the data segment158

of interest, in contrast to a fixed sliding window or fixed time interval when159

calculating the statistics without providing prior information nor following the160

trial and error approach.161

– This algorithm is a significant extension of the one presented in Tseng et al.162

(2009) as it enables the clustering of segments of various lengths without per-163

forming advanced signal processing such as wavelet analysis, which would add164

bias to the signal by assuming arbitrary mother wavelet shapes.165

The different GA characteristics are defined in the following subsections.166

2.2 Chromosome representation and initial population167

A direct encoding of the final segmentation solution is adopted where each individ-168

ual chromosome consists of an array of integer values (Michalewicz, 1996). Each169

position stores a cutting point of the time series. A chromosome of m segments is170

represented by {t1, . . . , tm−1}, where the value ti is the index of the i-th cutting171

point. In this way, the first segment is delimited by the cutting points 1 and t1, the172

second by the cutting points t1 and t2 and so on. An example of this chromosome173

representation is given in Figure 1.174

A GA requires a population of feasible solutions to be initialized and updated175

during the evolutionary process. As mentioned above, each individual within a176

population is a possible segmentation result for the time series considered. An177

initial set of chromosomes is thus generated with some constraints to form feasi-178
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a) Example chromosome. Each position represents an index of a time series value.  

4 8 13 18 

b) Segments of the time series resulting from the chromosome. 

1 2 3 4  4 5 6 7 8   8 9 10 11 12 13 

Segment 1  Segment 2  Segment 3 

              13 14 15 16 17 18  18 19 20 21 22      

Segment 4  Segment 5      

c) Corresponding segmentation and time series. The characteristics of each segment will be 

obtained for the corresponding part of the time series. 

 

                    t1                        t2                                      t3                                         t4 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

 

Fig. 1: Chromosome representation (Online version in colour)

ble segments. This initial population of t individuals is randomly generated. The179

number of individuals will be kept constant during the evolution. Further informa-180

tion of the creation of each initial individual can be found in in Pérez-Ortiz et al.181

(2014).182

2.3 Segment characteristics183

As a result of the genetic operators, the segments in a chromosome may have184

different lengths. Thus, an approach had to be designed to transform all the seg-185

ments to the same dimensional space. In this paper, six statistical metrics are186
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measured for all the segments included in a chromosome, allowing the GA to187

calculate similarities between segments using the same dimensional space. For the188

sake of simplicity, the following characteristics are referred to the segment Ss which189

is mathematically defined as Ss = {yts−1 , . . . , yts}:190

1. Variance (S2
s ): It is a measure of variability that indicates the degree of homo-191

geneity of a group of observations. The mathematical expression of this metric192

is:193

S2
s =

1

ts − ts−1

ts∑
i=ts−1

(yi − ȳs)2 , (1)

where (ts − ts−1) is the number of points of the segment, ts−1 is the index194

of the first point in the s-th segment, ts is the index of the last point in the195

segment, yi are the time series values of the segment, and ȳs is the average196

value of the segment.197

2. Skewness (γ1s): The skewness represents the asymmetry of a distribution of198

values within a segment. Segments can be skewed either up or down with199

respect to the arithmetic mean. The skewness is defined as:200

γ1s =

1
ts−ts−1

∑ts
i=ts−1

(yi − ȳs)3

S3
s

, (2)

where Ss is the standard deviation of the s-th segment.201

3. Kurtosis (γ2s): It measures the degree of concentration that the values present202

around the mean of the distribution. Positive kurtosis (i.e. long tails) indicate203

large excursions away from the arithmetic mean. Kurtosis is defined as:204

γ2s =

1
ts−ts−1

∑ts
i=ts−1

(yi − ȳs)4

S4
s

− 3. (3)

4. Slope of a linear regression over the points of the segment (as): A linear model205

is constructed for every segment, trying to achieve the best linear approxi-206

mation of the points in the evaluated segment. The slope of the linear model207
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is a measure of the general tendency of the segment. The slope parameter is208

obtained as:209

as =
Syt
s

(St
s)2

, (4)

where Syt
s is the covariance of the time indexes, t, and the time series values,210

y, for the s-th segment; and where St
s is the standard deviation of the time211

values. The mathematical expression for the covariance is:212

Syt
s =

1

ts − ts−1

ts∑
i=ts−1

(i− t̄s) · (yi − ȳs). (5)

5. Mean Squared Error (MSEs): This metric measures the degree of nonlinearity213

of the segment. As for the slope, a linear model is fitted and used to obtain214

the MSEs:215

MSEs = S2
s · (1− r2s), (6)

where:216

r2s =
Syt
s

S2
s · (St

s)2
. (7)

6. Autocorrelation coefficient (ACs): It measures the dependence of a time series217

with itself shifted by some time delay, i.e. the degree of correlation between218

the current values of the time series and the values in the previous time stamp.219

The ACs is defined as:220

ACs =

∑ts−1
i=ts−1

(yi − ȳs) · (yi+1 − ȳs)

S2
s

. (8)

Once the six statistical metrics have been calculated for each segment in a221

chromosome, a clustering technique is applied over this six-dimensional space.222
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2.4 Clustering: K-Means Algorithm223

A clustering process has to be applied in order to obtain the value of the fit-224

ness function for each segment. The algorithm chosen, K-Means, is applied to the225

time-series segments For further information on K-Means and the initialization226

procedure see Pérez-Ortiz et al. (2014).227

Before applying the clustering algorithm one should normalize the values of the228

segment metrics, as the distance of each segment to its centroid strongly depends229

on the range of values of each metric (e.g. variance can have a much broader range230

of variation than skewness). Thus, distances from each metric with larger ranges231

would disrupt others with smaller ranges. Scaling is used to avoid this problem:232

for a given segmentation, the segment metrics are normalized to the range [0, 1]233

using the min-max normalization:234

v∗ =
v − vmin

vmax − vmin
, (9)

where v is the value of the metric for a given segment, v∗ is the normalized value,235

vmin is the minimum value for this metric when considering all the segments and236

vmax is the maximum one. A constant value of v∗ = 0.5 is assigned whenever the237

metric is constant for all segments.238

2.5 Fitness239

All GAs need an evaluation mechanism to assign a quality index to each population240

individual. For clustering processes, one way to evaluate the obtained groups is241

to consider the Sum of Squared Errors (SSE), which consists of the sum of the242
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squared distances between each segment and its cluster centroid:243

SSE =
m∑
i=1

d2i , (10)

where i is the segment being evaluated, m is the total number of segments, and244

di is the distance between the segment i and its closest centroid.245

Our goal is to minimize this SSE in order to obtain more compact clusters246

(where each point is as closer as possible to its centroid, but the centroids are as far247

as possible from each other). However, when the GA tries to minimize the SSE,248

it tends to minimize the number of segments as much as possible and could even249

produce a partition where each cluster is a single segment. For instance, assuming250

that the number of clusters considered is five and that a chromosome includes only251

five segments, the SSE would be minimum in this case, SSE = 0, because each252

segment would constitute a cluster. Since this is not an acceptable solution, the253

fitness function is redefined considering also the number of segments:254

fitness =
m

SSE
. (11)

In this way, the algorithm tries to find partitions of the time series where255

the number of segments is sufficiently high to ensure the acquisition of valuable256

information from the clustering process.257

2.6 Selection and replacement processes258

In each generation, all individuals within the population are selected for reproduc-259

tion and generation of offspring to promote a greater diversity since the parents260

are not selected based on their fitness.261
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The replacement process has been performed by roulette wheel selection, i.e. a262

selection probability for each individual chromosome is calculated from its fitness263

value. The number of individuals selected is the population size minus one, and264

the vacant place is occupied by the best segmentation (with the highest fitness)265

of the previous generation, thus being an elitist algorithm.266

As can be seen, the selection process promotes diversity, while the replacement267

process promotes elitism.268

2.7 Mutation Operator269

The algorithm has been endowed with four mutation operators whose principal270

function is to perform a better random exploration of the search space, aiming to271

reduce the dependency to the initial population and escape from local optima.272

The probability pm of performing any mutation is decided by the user. Once273

a mutation is decided, the kind of perturbation applied to the chromosome is274

randomly selected from the following list: 1) add a cutpoint, 2) remove a cutpoint,275

3) move half of the cutpoints to the left, and 4) move half of the cutpoints to the276

right.277

The number of cutpoints to be added or removed is determined randomly.278

The number of points to move is approximately half of the available points and279

they are randomly selected and randomly pushed to the previous or the following280

point, with the constraint that it never reaches the previous or the next point.281

An example of the four mutation operations is included in Figure 2, where two282

cutpoints are removed, one is added and half of the them are moved to the left283

and to the right.284
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10 15 18 26 33 36 47 52 59 

 

10 15 26 33 36 47 59 

a) Mutation operator: remove two cut points 

(18 and 52). 

 

10 15 18 26 33 36 47 52 59 

 

10 15 18 26 33 36 39 47 52 59 

b) Mutation operator: add a cut point: 39. 

 

10 15 18 26 33 36 47 52 59 

 

9 15 16 26 31 32 47 52 53 

c) Mutation operator: randomly move cut-

points to the left. 

 

10 15 18 26 33 36 47 52 59 

 

10 17 20 29 33 36 47 54 63 

d) Mutation operator: randomly move 

cut-points to the right. 

 

 

 

 

 

 

 

 

Fig. 2: Mutation operator (Online version in colour)

2.8 Crossover Operator285

The algorithm includes a crossover operator, whose main function is to perform286

a better exploitation of the existing solutions. For each parent individual, the287

crossover operator is applied with a given probability pc. The operator randomly288

selects the other parent, a random index of the time series, and it interchanges the289

left and right parts of the chromosomes with respect to this point. An illustration290

of the crossover operator can be seen in Figure 3.291

10 15 18 26 33 36 47 52 59 62 68 75 80 84 88 92 95 99 

 

 

a) Before applying crossover operator. 

 

10 15 18 26 33 36 47 52 59 65 71 77 81 86 91 96 98 99 

 

 

b) After applying crossover operator. The crossover point was randomly decided to be 60. 

 

 

 

 

 

 

 

 

 

15 20 23 27 32 36 45 48 55 65 71 77 81 86 91 96 98 99 

15 20 23 27 32 36 45 48 55 62 68 75 80 84 88 92 95 99 

Fig. 3: Crossover operator (Online version in colour)
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3 Experiments292

3.1 Climate datasets293

The paleoclimate datasets chosen for this study are the GISP2 Greenland Ice294

Sheet Project Two and the NGRIP North Greenland Ice Core Project δ18O time295

series (Grootes and Stuiver, 1997; Stuiver and Grootes, 2000; Andersen et al.,296

2004; Svensson et al., 2008). The δ18O isotope record is a proxy for past surface297

temperature variations (Bradley, 2015). In this study we focus on the 20-yr res-298

olution δ18O isotope records from both drilling sites. Pre-processing the datasets299

in the form of a 5-point average was found to help reduce short-term fluctua-300

tions within the datasets and improve the analysis of time series segmentations.301

If {yn}Nn=1 is the original time series, then the considered time series is {y∗n}
N/5
n=1302

with y∗i = 1
5

∑5i+4
j=5i yi.303

In addition to the paleoclimate records, synthetic datasets obtained from well-304

known dynamical systems are also studied here to better understand the algo-305

rithm behaviour and as a preliminary attempt to reject or reinforce hypotheses306

related to underlying dynamical mechanisms for the DO events. Synthetic time307

series were produced using two simple mathematical models demonstrating noise-308

induced transitions as described in Benzi et al. (1981). We name Benzi-A the time309

series x(t) of a Langevin equation evolution with a gaussian noise component, a310

Wiener process dW :311

dx = [x(a− x2)]dt+ εdW, (12)

where ε = 0.5 is the noise level and a is a constant. For a > 0 the system has two312

equilibrium solutions and is able to alternate between them because of the noise313

fluctuations on x. We name Benzi-B the time series with an additional periodic314
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forcing with frequency Ω as described in Benzi et al. (1981):315

dx = [x(a− x2) +Acos(Ωt)]dt+ εdW. (13)

The Benzi-B time series demonstrates stochastic resonance for the noise level cho-316

sen. The following values were used for the parameters: a = 1.0, dt = 1.0, A =317

0.12, ε = [0.08, 0.10], and Ω = 10−3.0 In addition to the noise-induced transitions,318

time series of a simplified 2D model of the Atlantic thermohaline Meridional Over-319

turning circulation demonstrating critical as well as other types of bifurcations320

were also examined in this paper. A detailed description of the Thermohaline321

Ocean Model (T.O.M.) and its parameterizations can be found in Artale et al.322

(2002). Two experiments (TOM-A and TOM-B) were conducted by time varying323

the hydrological cycle strength FNS to push the system through bifurcation points.324

The FNS was varied with a rate of 10 ·10−11psu/sec units within a total period of325

700,000 years, which is slower than the time scale of the slowest process (diffusion)326

included in the system, in order to ensure resilience of the system to the exter-327

nal forcing (Saltzman, 2001). Experiments TOM-A and TOM-B were performed328

by increasing and decreasing the control variable FNS following the sequences of329

states (A,F,B,C,D,C,E,F,A) and (D,C,E,F,A,G,H) as shown in the state diagram330

of Fig. 4, respectively.331

3.2 Algorithm parameters332

GAs usually involve adjusting a notable set of parameters. However, their search333

dynamics can adapt to the problem under study, resulting in a performance which334

is negligibly affected by minor changes in the initial parameters. In this paper, the335

following parameters were initially set by trial and error and then used for every336
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<Q
> 

(s
-1

)

FNS*10-11 (psu/s)

A
B

CD E

F
G H

Fig. 4: Bifurcation diagram of the T.O.M system: average vorticity (< Q >) of

the circulation cell as a function of FNS : the strength of the evaporation minus

precipitation at the surface of the ocean, or hydrological cycle, in practical salinity

units psu/s. Notice the various bifurcation points BF1′, BF1′′, BF2 and the limit

cycles LC1, LC2 that mark certain values of FNS where transitions in the stability

of the equilibrium solutions take place. Each cross point is a stable solution. The

dashed branches represent unstable solutions where the system cannot be found

and are included for the shake of completeness. The two experiments TOM-A

and TOM-B were conducted by increasing and decreasing FNS to follow the state

sequences: TOM-A: (A,F,B,C,D,C,E,F,A) and TOM-B: (D,C,E,F,A,G,H). Notice

the hysteresis branches involved along the track of the experiments (Online version

in colour)
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dataset under study. The number of individuals (segmentation possibilities) of the337

population is t = 80. The crossover probability is pc = 0.9 and the mutation prob-338

ability pm = 0.075. The number of clusters to be discovered from each candidate339

segmentation is k = [4, 5]; such values are high enough to discover new information340

among the derived clusters, but not so high as to threaten the interpretation and341

reproducibility of the results. The maximum number of generations is set to 2000,342

and the k-means clustering process is allowed a maximum of 20 iterations.343

Finally a GA is a stochastic optimization algorithm with an embedded random344

number generator. Given that the results can be different depending on the seed345

value, the algorithm is run several times with different seeds. For each dataset, the346

GA was run 10 times, with seeds in the set {10, 20, . . . , 100} to evaluate and remove347

the dependence of the results on the seed value. It is also a step for evaluating the348

accuracy of the algorithm.349

4 Results350

This section presents the main results of the segmentation algorithm for the syn-351

thetic and paleoclimate datasets under study. The segmentation returned by the352

GA in the final generation was analyzed using the following approach: First it was353

verified whether the abrupt transitions were belonging to different classes or if they354

were grouped to the same class according to some common characteristics. Second355

the behaviour of each metric in the six-dimensional parameter space was observed356

on the onset of the transitions to find common patterns in the form of certain357

class sequences, that would be indicative of EWSs, e.g. increasing variance and358
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autocorrelation coefficient. This was done for the two independent paleoclimate359

datasets, the synthetic datasets, and for the ten seed values.360

4.1 Synthetic Datasets361

Based on the approach described above the following results have been obtained362

for the synthetic datasets to evaluate the performance of the proposed algorithm363

on well-described dynamical systems. Figures 5 and 6 present the segmentation364

results for the Benzi-A and -B models where transitions are caused by gaussian365

noise and stochastic resonance, respectively. The main results are listed below.366

1. The algorithm constantly attributes classes with high variance, autocorrela-367

tion, and MSE for the abrupt transitions (shown in red, magenta, and green).368

Variance, MSE, and autocorrelation increase by one order of magnitude close369

to the transition.370

2. There are no false alarms for the N-tippings in the Benzi-A -B models , i.e. the371

above classes are never found outside abrupt transitions.372

3. The algorithm performs much less robustly for transitions that are closely373

spaced to each other. Detection of transitions occuring less than 700 time374

steps after the previous transition goes down to 40% compared to transitions375

occurring after longer time intervals (e.g. ∆t ≥ 1200).376

4. The algorithm cannot identify whether the system under study is governed by377

stochastic resonance or only white noise-induced transitions since the statistical378

parameters observed by the algorithm follow a similar behaviour in both cases.379

5. A spurious class with segments of kurtosis value equal to −1 (i.e. broad and flat380

distribution) can easily be identified from the segmentation results, otherwise381
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the kurtosis value is usually positive (γ ∈ (0, 2)), corresponding to narrower382

distributions.383
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(b) Benzi-B model: stochastic resonance

Fig. 5: Results of the segmentation algorithm for the Benzi-A and B models gov-

erned by Gaussian noise (left) and stochastic resonance (right), ε = 0.08. The tran-

sition belongs to a single class (shown in red) with high autocorrelation, variance,

MSE, skewness and kurtosis compared to the segments preceding the transition

(Online version in colour).

Figures 7 and 8 present the segmentation results for the Thermohaline Ocean384

Model (T.O.M.), where the system undergoes critical bifurcations in experiment385

TOM-A and both critical and limit cycle transitions in experiment TOM-B. The386

main results are listed below, employing the maximum flow strength Ψ as a state387

variable second to the average vorticity Q.388

1. The TOM-A experiment pushes consecutively the system across two bifurca-389

tion points BF1′ and BF1′′ that mark the limits of a hysteresis on the bifur-390
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(b) Benzi-B model: Stochastic resonance

Fig. 6: Results of the segmentation algorithm for the Benzi-A and B models where

transitions are governed by Gaussian noise (left) and stochastic resonance (right),

ε = 0.10. In both cases, the transitions are attributed classes (shown in red, ma-

genta, and green) with high autocorrelation, variance, and MSE compared to the

class of the preceding segments (Online version in colour).

cation diagram (see Fig. 4). The B-tipping associated with the BF1′ point is391

always detected by the algorithm in the form of increased autocorrelation, MSE392

and variance in the sequence of classes until the transition. This is encountered393

in both state variables Q and Ψ (see Fig. 7(a): green, blue, red, green, and Fig.394

7(b): blue, red sequence)395

2. The detection of the second bifurcation tipping BF1′′ was accompanied by396

false alarms for 40% of the cases for the variable Ψ , meaning that the sequence397

of classes at the B-tipping was repeated at parts of the time series where no398

bifurcation point was crossed (see Fig. 7(b): blue, green sequence), as consulted399

by the bifurcation graph (Fig. 4).400
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3. The experiment TOM-B pushes the system consecutively across the BF1′′ and401

the limit cycles LC1 and LC2 where the system engages in internally excited402

oscillations, irrelevant to external periodic forcings therefore the use of the403

”cycle” term (see Fig. 4). The variability of Q and Ψ differ in amplitude, with404

Ψ having a larger amplitude.405

4. The increase in variance, MSE and autocorrelation by two orders of magnitude406

at 100% of the runs while crossing the critical bifurcation point BF1′′ is a407

robust indicator of B-tipping in the Q time series.408

5. The algorithm divides the Q data series section that corresponds to the interval409

(F,A,G) (see Fig. 4) to consecutive segments of the same class. It successfully410

(90%) attributes the same class to the qualitatively same states of the sys-411

tem (see Fig. 8(a): multiple blue segments), without prior knowledge of their412

similarity on the bifurcation graph.413

6. Failure to detect the B-tipping in the Ψ series at the BF1′′ point as it falsely414

attributes to the B-tipping one of the two similar classes that are used for the415

interval (F,A,G) where no qualitative change is observed in the system’s state416

(see Fig. 8(b): magenta, green, blue). In contrast, the algorithm captures the417

BF1′′ successfully in the Q series.418

7. Increase in variance, MSE but decrease in autocorrelation by one order of419

magnitude is diagnosed in Ψ time series following the transition to the limit420

cycle at point LC1, showing a different statistical profile for this transition. The421

signal is very robust, persisting during three consecutive classes for 80% of the422

algorithm seeds, instead of two classes for the previous statements, setting a423

stronger diagnostic of the tipping using these three metrics as robust indicators424

(see Fig. 8(b): green, red).425
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Fig. 7: Results of the segmentation algorithm for the Thermohaline Ocean Model

(T.O.M.) with the system undergoing critical bifurcations (Experiment TOM-A)

for the average vorticity Q (left) and maximum flow strength Ψmax (right). The

BF1′ bifurcation is successfully detected through a unique class attribution with

an increase in autocorrelation, MSE and variance. None of the datasets captures

the intermediate stable state reached before the BF1′′ transition, resulting in false

alarms (decrease in autocorrelation, MSE and variance for the second BF1′′ point,

in contrast to the EWSs expected by the literature. The seed value s of the random

initiation is noted below each image. (Online version in colour).

426

4.2 Paleoclimate Datasets427

This subsection presents the main results of the segmentation algorithm for the428

paleoclimate datasets, following the same approach as for the synthetic datasets.429

They are listed below:430
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Fig. 8: Results of the segmentation algorithm for the Thermohaline Ocean Model

(T.O.M.) with the system undergoing critical and limit-cycle bifurcations (Experi-

ment TOM-B) for the average vorticity Q (left) and maximum flow strength Ψmax

(right). Transition through the BF1′′ is captured in the Q series but is documented

as a false alarm in the Ψ time series. The LC1 is detected in both runs with the

difference that in (b) the autocorrelation decreases close to the transition instead

of increasing as in (a). The seed value s of the random initiation is noted below

each image. (Online version in colour)

.

1. The DO events are grouped into two main classes, sometimes three because the431

values of autocorrelation, variance, and MSE may differ significantly from one432

DO event to another. The high number of classes considered here (5 classes in433

total) allows for flexibility within the algorithm.434

2. EWSs of DO events are found by the segmentation algorithm in the form of435

an order of magnitude increase in autocorrelation, variance, and mean square436

error (MSE) across a sequence of two classes. These EWSs are robustly found437
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(70%+) in the GISP2 δ18O dataset for DO 0, 1, 2, 4, 7, 8, 11, 12 and for DO438

0, 1, 4, 8, 10, 11, 12 for the NGRIP δ18O dataset (see Fig. 9).439

3. The increase in mean square error (MSE) is suggested here as an additional440

indicator of abrupt climate change. The increase in MSE, which suggests non-441

linear behaviour, has been found to correspond with an increase in variance442

prior to DO events for ∼90% of the seed runs for the GISP2 δ18O dataset (see443

Fig. 9) and for ∼100% of the seed runs for the NGRIP δ18O dataset.444

4. The increase in the autocorrelation coefficient cannot be solely used as indicator445

of climate change. The algorithm sometimes found an increase in MSE and446

variance but a decrease in autocorrelation coefficient on the onset of DO events.447

This signature was minor in the GISP2 δ18O dataset (e.g. DO 2, 10) but much448

more present in the NGRIP δ18O dataset (e.g. DO 0, 1, 5, 7, 8, 10). Hints of449

this behaviour could already be found for DO 1 by Lenton et al. (2012). We450

stress that the increase in variance and MSE is a much more robust EWS for451

the NGRIP dataset especially.452

5. Analysis of paleoclimate records GISP2 and NGRIP did not find any consistent453

change in skewness nor kurtosis on the onset of DO events.454

Considering algorithm runs with different seed values revealed minor differences455

such as DO events being attributed to other classes and the cutpoints between456

classes being not exactly at the very same location, but the main characteristics457

described here and in the five main points remained robust throughout the analy-458

sis. Finally, the average computational time of the 10 runs was 53.24± 10.36 and459

65.45 ± 10.38 seconds for GISP2 δ18O and NGRIP δ18O datasets, respectively,460

using an Intel Core i7 (R) CPU 3610QM at 2.3GHz with 8GB of RAM. Taking461
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Fig. 9: Time series metrics after the clustering process (i.e. the segments found by

the algorithm are replaced with their clusters centroids). The increase in MSE is

associated with an order of magnitude increase in variance and autocorrelation on

the onset of DO events. All DO events are represented for reference (GISP2 δ18O

ice core, seed = 10).

the length of the datasets into account, this computational cost is justified and462

affordable.463

Figure 10 presents the detailed segmentation results for GISP2 and NGRIP464

δ18O ice core data for a fixed seed value. The warning signals can be seen as the465

transition between consecutive segments and the label assigned to such segments,466

e.g. the upward trend in nonlinearity was seen via one or two consecutive increases467

in value, although this depends on the number of segment classes compared to the468

whole dataset length. The Dansgaard-Oeschger events are found grouped into two469

or three main classes with high autocorrelation, MSE, and variance corresponding470

to classes C1 and C2 for GISP2 and classes C1 and C5 for NGRIP for that run.471

An order of magnitude increase in these statistical parameters are found at the472

onset of the events; they decrease back to normal values as the dynamical system473
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(a) Segmentation results on GISP2 dataset
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Fig. 10: Results of the segmentation algorithm on δ18O ice core data (seed = 10).

The Dansgaard-Oeschger events are found grouped into two or three main classes

with high autocorrelation, MSE, and variance. (a) GISP2: C1, C2, and C5. (b)

NGRIP: C1 and C5. All Dansgaard-Oeschger events are numbered for reference.

(Online version in colour)

slowly recovers to its stable state. This behaviour can also be seen in Fig. 9, which474

illustrates the evolution of the statistical metrics accross the whole GISP2 data475

series.476

477

A detailed analysis of Fig. 10 reveals that class C3 for GISP2 dataset was the478

third main class, grouping segments with the lowest MSE, variance, and auto-479

correlation for that seed run and was found at the onset of several DO events480

(e.g. 1, 4, 8, 12) collocated with the Heinrich events H1, H3, H4, H5 as well as481

during the Holocene period (for an introduction to Heinrich events see Hemming,482

2004). Classes C4 and C5 have been found outside the plotted area (in the -50ka,483
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-60ka range) and therefore do not appear in the graph. As for the NGRIP dataset484

classes C2 and C4 (with the lowest MSE, variance, and autocorrelation) have been485

found at the onset of several DO events as well (e.g. 4, 7, 8, 10 and 12) with an486

unusual behaviour in the autocorrelation coefficient for DO 1. A detailed analysis487

of their six-dimensional vector revealed that classes C2 and C4 differ only from the488

point of view of kurtosis. This is further discussed in the discussion section about489

the limitations of the algorithm. Class C5 (cyan curve in Fig. 10b) is considered490

the main DO class in NGRIP data for that particular run with a highly linear491

relationship (ratio of 1:1) between variance and MSE within that class and a con-492

stant high autocorrelation coefficient. This is illustrated in Fig. 11, where the 3D493

representation of the clustering results is shown for variance, autocorrelation, and494

MSE (normalised values), where each point is a segment within its own cluster,495

colour-coded according to the classes shown in the previous figure (Fig. 10).496
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Fig. 11: 3D representation of the clustering results for variance, autocorrelation

and MSE (normalized values), where each point is a segment within its own cluster.

The centroids are represented by black circles (Online version in colour).
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5 Discussion497

Before diagnosing the high variability of the ice core data series for EWSs, the498

algorithm is tested on synthetic data, which include transitions associated to N-499

and B-tipping (Ashwin et al., 2012). Patterns preceding such transitions can be500

studied in the controlled environment of simulated data for possible existence501

of EWSs, with the advantage of prior knowledge of their underlying dynamic502

mechanisms. It was found that testing the proposed algorithm on the simulated503

time series was successfull in detecting the N-tippings (100%) and the B-tippings504

(100%) in the time series. EWSs of those tippings were revealed in the form of505

sequence of classes with pronounced differences in their autocorrelation, variance506

and MSE. Therefore, before a N-transition point in the data series we observe at507

least an order of magnitude increase in autocorrelation, variance, and MSE via508

their changes of class through two or three consecutive segments. This sequence is509

not seen throughout the dataset in the absence of N-tipping event. Frequently in510

the runs the last segment includes the transition point itself. This occurs due to511

the randomised initial segmentation. However, the sequence of classes attributed512

still compactly describes the statistical evolution of the time series before and after513

the onset of the tipping and serves in classifying the type according to differences514

in the attributed class sequence.515

In the case of B-tipping, the algorithm always captures the critical bifurca-516

tions using the same EWS as in the N-tipping in absence of other B-tippings in517

the dataset. In agreement with previous studies (see Introduction) an increase in518

variance and autocorrelation is found and an increase to the MSE metric is added519

to the tipping precursors. The existence of a second critical bifurcation, as seen520
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in the TOM-A experiment can undermine the detection of multiple B-tippings if521

they occur within a short time interval, compared to the time series length. It522

could also be that the availability of warning signals or resilience indicators are523

absent as proposed in Batt et al. (2013) for stable to cycle transitions of phyto-524

plankton blooms. For the systems whose state is described by multiple variables,525

the dynamical transitions occuring could be differently depicted on each variable526

evolution and therefore be elusive to the algorithm from variable to variable as527

seen in experiment TOM-B . An important aspect of the precursor signal at the528

LC1 transition is that both the variance and MSE increases, while the algorithm529

fails to see an increase in autocorrelation prior to the transition: it only sees a530

sharp decrease in autocorrelation following the transition. Such types of signals531

mark the transition of the system from one stable state to a state that alternates532

between stable points and have been encountered in the study of similar ecosys-533

tem dynamics already (Batt et al., 2013). This encouraging result was captured534

by the algorithm demonstrating its ability to distinguish between qualitatively535

different B-tippings. The algorithm was able to cluster segments with qualita-536

tively same states into one or two classes with minor differences in their statistical537

metrics without prior knowlegde of the bifurcation diagram. Regarding technical538

limitations of the algorithm, the kurtosis and slope coefficients are inconclusive as539

classification criteria and the algorithm is unable to detect multiple tipping tran-540

sitions that occur within a short time interval, which is an expected weakness for541

any statistically-based approach that relies on the size of the sample.542

The comparative study of the two independent ice core datasets revealed that543

the algorithm could capture the same main characteristics in warning signals of544

DO events. For instance warning signals were robustly detected (≥ 70% of the545
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seed runs) for DO events 0, 1, 4, 8, 11, and 12 for the two independent datasets546

in the form of an order of magnitude increase in autocorrelation, variance, and547

mean square error (MSE). Significant changes in these metrics were detected in548

the two ice cores for DO 2, 3, 5, 6, 7, and 10 for 20%–70% of the algorithm seeds,549

suggesting that these events possess weak warning signals. To analyse EWSs we550

considered a time span starting 100 years after the previous DO event until the one551

under study. Warning signals were detected at least 600 years in advance by the552

algorithm (e.g. DO 1, 2, 4, 8, GISP2 data) and up to 1.8 kyrs before the event (e.g.553

DO 12, NGRIP data). A minimum time period for investigating EWSs before the554

onset of DO events would therefore correspond to 600 years, which is comparable555

with values found in the literature (e.g. more than 700 years for the increase in556

variance as found by Cimatoribus et al. (2013). The starting point for considering557

this time span should be the start of the cold stadial state to discriminate from the558

dynamical behaviour of the previous event, e.g. a decrease in autocorrelation. The559

non-detection by the algorithm of any warning signals for DO event 9 supports560

this hypothesis: DO 9 starts 1 kyr after the onset of the previous event but only561

500 years after the beginning of the cold, stable period. The case of DO 9 not562

being detected falls in the shortcomings of the algorithm, which underperforms for563

short temporal distance from the previous transition i.e. DO event. Detection of564

warning signals notably improves for DO events with previously long cold stadials.565

This is also consistent with the results of the synthetic datasets, e.g. the noise-566

driven system and the stochastic resonance system, ε = 0.1: the performance of the567

algorithm in detecting warning signals for transitions occurring less than 700 years568

after the previous transition goes down to 40% compared to transitions following569

longer stable states (e.g. ∆t ≥ 1200).570
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Hypotheses of underlying dynamical mechanisms for DO events can be rein-571

forced or rejected by additional comparison with the algorithm behaviour on simu-572

lated data produced with well-known dynamical models. In this reverse engineering573

approach more than a single model can reproduce the variability encountered in574

the ice core or any other paleoclimatic record (Crucifix, 2012), so any interpreta-575

tion of dynamical systems should be used with caution and in combination with576

scientific insight. Distinct behaviours for the autocorrelation coefficient have been577

found according to the type of transition studied as revealed from the synthetic578

data analysis. The algorithm sometimes found an increase in MSE and variance579

but a decrease in the autocorrelation coefficient on the onset of DO events 1 and580

10 in both the GISP and NGRIP datasets. It is therefore proposed to revisit the581

hypothesis that the DO events were caused by an uniform dynamical system, e.g.582

the stochastic resonance hypothesis (Ganopolski and Rahmstorf, 2001, 2002), as583

statistical indicators seem to point to certain DOs being attributed other dynam-584

ical causes. This aspect is left for investigation to the specialized paleoclimate585

scientist.586

When analyzing the results of segmentation algorithms we also considered the587

segment lengths as a possible bias factor to the diagnostics. It can happen that the588

algorithm is not able to assign a proper class to a segment and prefers to divide589

the segments into smaller sections to reduce e.g. MSE and kurtosis values. The590

new smaller sections are likely to be grouped together in this parameter space,591

allowing the algorithm to perform the clustering process. Moreover, analyzing Eq.592

(11), fitness is directly proportional to the number of divisions so segmentations593

with a high number of cut points will be prefered. One signature of this effect is594

seen in the fact that all small segments are found in a single class with very low595
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kurtosis (γ=[-1.6,-1.9]), constant skewness (equal to 0), and a large range of slope596

coefficients. They are represented by a straight line in Fig. 12. Special care was597

taken to discard those small segments (e.g. containing 2 or 3 points) in the analysis598

of EWSs, otherwise they would have lead to false alarms, i.e. events of nonlinear599

behaviour that are not leading up to a DO event, e.g. at -20.66 kyrs (Fig. 9 & 10a,600

GISP2 data). Closer inspection revealed that the increase in nonlinearity was a601

spurious effect due to the small segments, which were discarded in order to avoid602

false alarms.603
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Fig. 12: 3D representation of the clustering results for slope, skewness and kurtosis

(normalized values) where each point is a segment within its own cluster. The

centroids are represented by black circles (Online version in colour).

6 Conclusion604

In this paper, a novel genetic algorithm (GA) from the field of time series seg-605

mentation is applied to paleoclimate data in order to identify common patterns606
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that would act as early warning signals for abrupt climate shifts. The algorithm607

automatically finds the cutpoints, segment length, and the length of the window608

for calculating six statistical metrics without providing climate knowledge or any609

prior information. In addition to the variance and autocorrelation, the MSE met-610

ric is found to respond robustly before a tipping point. A few datasets were used611

to evaluate the algorithm behaviour, revealing similarities and differences amongst612

the EWSs occurring before different qualitative tipping types. Experimental re-613

sults show that warning signals of Dansgaard-Oeschger events could be robustly614

found for several of these events in the form of an order of magnitude increase in615

autocorrelation, variance, and mean square error in both GISP2 and NGRIP δ18O616

ice core data, but those that occurred within a short time interval were elusive.617

The GA applied to NGRIP δ18O ice core record showed that increasing autocor-618

relation coefficient cannot be solely used as an indicator of climate shifts, as the619

expected tendency of an increase in value is not seen for certain DO events. Com-620

parison with synthetic datasets of well-known dynamical behaviour suggests that621

different DO events might be triggered by different underlying dynamics. Finally622

the proposed approach provides a novel visualisation tool in the field of climate623

time series analysis and detection of warning signals of abrupt transitions.624

As future steps, improvements of the algorithm are required to overcome625

its limitations regarding consecutive fast transitions. We also suggest creating626

a dataset comprising several tipping points and their statistical metrics to in-627

vestigate the development of data-driven mathematical functions that would be628

representative of abrupt transitions.629
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