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Abstract: Patients with advanced chronic kidney disease exhibit an increase in cardiovascular
mortality. Recent works have shown that low levels of magnesium are associated with increased
cardiovascular and all-cause mortality in hemodialysis patients. Epidemiological studies suggest
an influence of low levels of magnesium on the occurrence of cardiovascular disease, which is also
observed in the normal population. Magnesium is involved in critical cellular events such as apoptosis
and oxidative stress. It also participates in a number of enzymatic reactions. In animal models
of uremia, dietary supplementation of magnesium reduces vascular calcifications and mortality;
in vitro, an increase of magnesium concentration decreases osteogenic transdifferentiation of vascular
smooth muscle cells. Therefore, it may be appropriate to evaluate whether magnesium replacement
should be administered in an attempt to reduce vascular damage and mortality in the uremic
population In the present manuscript, we will review the magnesium homeostasis, the involvement
of magnesium in enzymatic reactions, apoptosis and oxidative stress and the clinical association
between magnesium and cardiovascular disease in the general population and in the context of
chronic kidney disease. We will also analyze the role of magnesium on kidney function. Finally,
the experimental evidence of the beneficial effects of magnesium replacement in chronic kidney
disease will be thoroughly described.
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1. Magnesium: Metabolism and Physiology

Magnesium (Mg) is one of the most abundant cations in organisms [1], and it is involved in
a number of physiological processes such as enzymatic reactions and membrane and structural
functions [2].

In health, total Mg levels range between 0.7 and 1.4 mM. Johansson et al. compared the levels of
ionized and total Mg, finding a weak correlation between both forms [3]. Bone is the main reservoir of
Mg (60–65%), buffering changes in Mg level; tissue compartments, mainly skeletal muscle, represent
approximately 35% of total Mg, whereas only 1–2% Mg is present in the extracellular fluid [1]. Serum
Mg can be found in three different forms: (1) ionized, which mainly exerts biological actions (55–70%),
(2) bound to proteins (20–30%) and (3) forming complexes with phosphate, citrate and bicarbonate
(5–15%) [2,4]. Assessment of Mg levels is normally performed by measuring total serum Mg. However,
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this parameter may not reflect accurately the actual Mg availability (ionized Mg) due to the fact that it
is influenced by factors such as pH or the presence of other ligands; this is of particular importance in
the population with chronic kidney disease (CKD), in which advanced stage ionized Mg levels are
affected by high serum phosphate and a high anion gap [5]. The vast majority of Mg is stored in bone,
muscle and at the intracellular level, which may further impair a precise evaluation of Mg status [6].

According to the U.S. Institute of Medicine (Washington DC), daily Mg intake in men and women
is estimated to be 420 and 320 mg/day, respectively. Approximately 50% of Mg is absorbed, although
this proportion varies according to the dietary content of other elements such as protein or fiber [7].
Three different organs are responsible for Mg homeostasis: intestine, where absorption takes place;
bone, responsible for storage; and kidneys, controlling Mg excretion. Intestinal Mg absorption occurs
through two different paths: paracellular transport, a passive mechanism that represents 80–90%
of intestinal uptake, and transcellular absorption, which involves the participation of the transient
receptor potential channel melastatin members 6 and 7 (TRPM 6 and TRPM7) [8]. As mentioned, bone
is essential for Mg storage, and it has been shown that dietary Mg influences bone metabolism [9].
Magnesium reabsorption takes place in the various parts of the nephron through different mechanisms:
passive paracellular transport occurs in the proximal tubule and the thick ascending limb, where
10–25% and 70% of Mg is absorbed, respectively. Claudins are tight-junction proteins that determine
the selectivity to small ions and neutral solutes, and most of them are expressed in the renal tubule [10].
Claudins 16 and 19 have relevant roles in the paracellular transport of Mg in the thick ascending limb,
and mutations in their genes cause Mg wasting [11,12]. Furthermore, the TRPM6 channel enables the
active transport of Mg predominantly in the distal convoluted tubule, where approximately 10% of
Mg is reabsorbed [8]. A scheme of Mg homeostasis is depicted in Figure 1.
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2. Magnesium and Enzyme Activity

Magnesium acts as a cofactor in reactions related to glycolysis [13], cell respiration [14,15] and the
transport of cations across membranes [16]. Magnesium participates in enzymatic reactions [2,17] in
several ways: binding to the ligand, binding to the active site of the enzyme, inducing a conformational
change during the catalytic process, promoting the formation of multi-enzyme complexes or the
combination of some of these. When forming complexes with ATP or GTP, Mg is the substrate for
kinases B, ATPases or GTPases and cyclins. Furthermore, Mg is directly involved in the activation of
enzymes such as phosphofructokinase, adenylate cyclase and Na+ and K+-ATPase [18]. In the context



Int. J. Mol. Sci. 2018, 19, 664 3 of 19

of mineral metabolism and its derangements in renal disease, many of these enzymes are key for the
normal release of parathyroid hormone (PTH).

3. Magnesium and Apoptosis

Apoptosis is a mechanism of programmed cell death, necessary to eliminate damaged or unneeded
cells, but it is also a physiological response under cellular stress. Magnesium itself has a prominent
role in the onset of apoptosis. An increase in intracellular Mg is observed in cells undergoing apoptotic
death, and this precedes DNA fragmentation; it has been hypothesized that mitochondria are the
primary source of Mg, since treatment with an inhibitor of mitochondrial oxidative phosphorylation
reduced the proportion of cells mobilizing Mg and the degree of DNA fragmentation, one of the
hallmarks of apoptosis [19].

Divalent cations are essential for the normal functioning of the cell. A number of pieces of
evidence points to the proapoptotic role of Mg deficiency. In rats, Malpuech-Brugère and collaborators
reported an association between low Mg and early thymus involution that was accompanied by
histological changes and an elevated apoptosis rate [20]. In addition, low Mg concentrations promote
apoptosis in cultured rat hepatocytes, although Mg supplementation does not prevent the spontaneous
apoptosis that normally occurs in this type of cell culture [21]. Similar observations have been reported
in the vasculature. Li and collaborators found that the decline in Mg associated with the treatment
with peroxynitrite triggered apoptosis in cultured vascular cells and was attenuated by the addition
of Mg [22]. In vivo, Mg dietary deficiency is related to increased DNA fragmentation and caspase-3
activity in cardiac and vascular tissue; by contrast, Mg supplementation abolishes such effects [23].
According to the work by Feng et al., the scavenger receptor BI (SR BI) is involved in the mechanism
underlying the apoptosis dependent on Mg deficiency [24].

4. Magnesium and Oxidative Stress

Multiple studies have linked Mg deficiency and negative cardiovascular outcomes (reviewed
in [25–27]), and a considerable amount of evidence points to exacerbated oxidative stress as one of the
mechanisms contributing to such deleterious effects.

Shivakumar and collaborators showed for the first time an increase in TBARS (thiobarbituric
acid-reactive substances), an indicator of increased oxidative activity, in plasma and aorta from rats fed
with a Mg-deficient diet, along with an increased activity of antioxidant enzymes [28]. The experimental
administration of a Mg-deficient diet for 21 days produced an increase in lipid peroxidation at
cardiovascular level, which was prevented with Mg supplementation [23]. Also in line with these
findings, Mg administration prevented the cardiovascular increase in lipid peroxidation following
heart injury in dogs [29]. The direct relationship between low Mg and oxidative damage was confirmed
in vitro in aortic endothelial cells by Dickens et al., who also reported a concomitant and acute negative
effect on cell viability [30]. In this regard, a possible involvement of low Mg-induced oxidative stress
in processes related to endothelial dysfunction has been suggested [31]. Such effects may be supported
by the involvement of reactive oxygen species in hypertension, endothelial dysfunction and vascular
remodeling caused by chronic Mg deficiency [32].

Other tissues are also susceptible to suffer oxidative stress by Mg insufficiency. The skeletal
muscle of rats receiving a Mg-deficient diet for 12 days exhibited higher production of free radicals
that were accompanied by ultrastructural abnormalities [33]. A similar effect has also been reported in
liver [34]. Furthermore, low Mg may produce changes in mineral homeostasis, and it is also associated
with chronic hyperglycemia, which contributes to the increase in oxidative stress in diabetes type 2.
In a case-control study, Araujo-Sampaio et al. found, among other mineral disturbances, a higher
incidence of hypomagnesemia in spite of a significantly more elevated consumption of Mg, which
might partially contribute to the marked increase in the formation of TBARS found in plasma and
suggest an inadequate Mg handling in this pathology [35].
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According to recent findings, the relationship between low Mg and oxidative stress is bidirectional,
and oxidative stress may also exacerbate Mg deficiency. Kolisek and collaborators hypothesized that
the upregulation of the protein PARK7/DJ-1, due to increased oxidative stress, may underlie the
changes in Mg level through promoting the transcription of the Na/Mg exchanger SLC41A1 [36].

Taken together, all these pieces of evidence point out to both antiapoptotic and antioxidant
beneficial effects of normalizing serum Mg concentration. Nevertheless, interventional studies in
humans are needed to further explore the beneficial impact of Mg supplementation on apoptosis- and
oxidative stress-related parameters.

5. Clinical Association between Magnesium and Cardiovascular Disease in the General Population

Magnesium has vasodilatory, anti-inflammatory, anti-ischemic and antiarrhythmic properties;
thus, it is presumably a useful therapeutic agent in cardiovascular medicine. Several studies have
established the role of Mg in the pathogenesis of cardiovascular disease (CVD) in the general
population [37,38]. In the general population, hypomagnesemia is normally observed in diabetes,
chronic gastrointestinal diseases, alcoholism and the use of certain drugs. In hospitalized patients,
the prevalence of hypomagnesemia is estimated to be between 9% and 65% [39]. Epidemiology
studies show that low levels of serum Mg may increase the risk of CVD [40,41]. Accordingly, several
meta-analyses suggest that the intake of Mg is associated with a reduced incidence of CVD [42,43].
A summary of the main studies reported in this regard is shown in Table 1.

In a prospective study of Mediterranean individuals at high risk of CVD, an inverse association
between dietary Mg intake and risk of mortality was found; however, no significant associations with
cardiovascular events were observed [44]. In a prospective cohort of women, higher Mg intake and
serum Mg were associated with a lower risk of fatal coronary heart disease (CHD) [45]. In another
prospective cohort of older adults, plasma Mg concentration was inversely related to all-cause mortality
risk, but not to dietary Mg intake. High plasma Mg was associated with a 29% lower risk of all-cause
mortality [41]. Other prospective studies show that adults at high CVD risk who had the highest Mg
intake were at a 37% lower risk of all-cause mortality [41,44].

A meta-analysis evaluating the association between Mg and the risk of cardiovascular events
demonstrated that both dietary and serum Mg were inversely related to the risk of total CVD events [42].
Likewise, inverse associations between dietary Mg intake and the risk of stroke or ischemic heart
disease were also demonstrated in other meta-analyses [43]. In the most recent meta-analysis about
this issue, elevated intake of dietary Mg was associated with a reduced risk of stroke, heart failure,
diabetes and all-cause mortality, but not with CHD or total CVD. In fact, it was associated with a 22%
reduction in the risk of heart failure and a 7% reduction in the risk of stroke [40].

Consequently, the majority of recent studies support an inverse correlation between dietary Mg
intake and serum Mg levels and the risk of CVD and mortality.
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Table 1. Summary of studies evaluating the effect of magnesium on cardiovascular-related outcomes in the general population.

Reference Study Type Clinical Setting No. of Subjects Outcome Conclusion

Fang et al. [40] Meta-analysis of
prospective studies General population >1,000,000

CVD (coronary heart disease,
ischemic heart disease, stroke)

and all-cause mortality

Increasing dietary Mg is associated
with a reduced risk of stroke and
heart failure, but not with total
CVD, and all-cause mortality.

Huang et al. [41] Observational Elderly 1400 All-cause and
cause-specific mortality

Low plasma Mg levels increase
all-cause mortality.

Qu et al. [42] Meta-analysis of
prospective studies General population 532,979 CVD Inverse association between dietary

Mg intake and CVD risk.

Del Globbo et al. [43] Meta-analysis of
prospective studies General population 313,041 Incidence of CVD,

including IHD
Plasma and dietary Mg are
inversely associated with CVD risk.

Guasch-Ferré et al. [44] Prospective Individuals at high
risk of CVD 7216 CVD and all-cause mortality

Mg intake is associated with a
lower mortality risk in this
population, but not with CV events.

Chiuve et al. [45] Prospective Women free of
disease 86,323 CHD Dietary Mg intake was inversely

associated with fatal CHD.

CVD: cardiovascular disease; Mg: magnesium; IHD: ischemic heart disease; CV: cardiovascular; CHD: coronary heart disease.
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6. Clinical Association between Magnesium and Cardiovascular Disease in CKD

Cardiovascular disease is the leading cause of mortality in the CKD population [46]. In CKD,
the reabsorption of Mg is progressively adapted as the glomerular filtration rate (GFR) decreases, in an
attempt to maintain serum Mg within a physiological range. The incidence of hypomagnesemia was
recently evaluated in a population of hemodialysis individuals, reporting 12% of hypomagnesemic
patients [47]. Magnesium intake is the main reason for the Mg serum levels in hemodialysis
patients [48]. Importantly, due to potassium dietary restriction, CKD patients are at risk of
hypomagnesemia given that foods rich in this element such as green vegetables and nuts also contain
elevated amounts of Mg [49].

Magnesium has been shown to impact cardiovascular health positively [38,50–52]. A large
registry-based cohort study by Sakaguchi and collaborators revealed the role of Mg as a predictor
of all-cause and cardiovascular mortality in end-stage renal disease; patients in the lowest sextile of
plasma Mg showed higher mortality rates [53]. Hypomagnesemia is tightly linked to the development
of diabetes [54,55], and diabetes represents an important risk factor associated with CVD in uremia. In a
population of type 2 diabetic patients, low Mg has been shown to predict cardiovascular mortality [56].

Magnesium has been shown to be related to different aspects of CVD. Human studies concerning
this issue are summarized in Table 2.

6.1. Vascular Calcification

Coronary artery calcification (CAC), as a measure of advanced atherosclerosis, is a predictor
of CVD [57]. In the absence of CKD, Mg has been inversely related to CAC in two cross-sectional
studies. Hruby et al. reported 22% lower CAC score per increment of 50 mg/day in Mg intake in
patients free of CVD [58]. Similarly, in another study including 1276 patients with no symptoms of
CVD, those patients in the highest quartile of serum Mg (2.20–2.29 mg /dL) had significantly lower
odds of CAC than those in the lowest quartile (1.83–1.94 mg/dL), p = 0.016 [59]. To our knowledge,
only one study has assessed so far the association between magnesium and CAC in the setting of CKD.
In predialysis patients with a mean eGFR of 35.7 mL/min/1.73 m2, an inverse relationship was found
between serum Mg and CAC density, but not area. This relationship was also observed after adjusting
for malnutrition-inflammation-atherosclerosis- and mineral and bone disorder-related parameters [60].
The experimental design of a multicentric randomized double-blind placebo-controlled clinical trial
assessing the impact of the administration of oral Mg has been recently published [61]. This study is
intended to evaluate the effect of the administration of a daily dose of 30 mmol of elemental Mg in
predialysis patients with an eGFR range of 15–45 mL/min/1.73 m2 on the prevention of the progression
of CAC, and it is expected to shed light on the impact of the handling of serum Mg in the progression
of vascular calcification (VC).

6.2. Intima-Media Thickness

Intima-media thickness (IMT) appears to be influenced by Mg. In an observational study,
36 CKD patients at Stage 5 (eGFR < 15 mL/min/1.73 m2) and 61 individuals with no CKD
(eGFR > 60 mL/min/1.73 m2) were allocated into two groups according to plasma Mg level [62].
Both high and normal Mg levels were defined as 0.90–1.32 mmol/L and 0.62–0.89 mmol/L, respectively.
IMT did not differ significantly according to Mg concentration in controls. However, normal Mg
was associated with higher IMT in both carotid arteries when compared with high Mg. Interestingly,
patients with 0.90–1.32 mmol/L Mg had pulse wave velocity values similar to those observed in
patients with normal renal function. Results in line with these have been recently reported in a
pediatric population [63]. The effect of oral Mg supplementation has also been tested in hemodialysis
patients. After two months of administration of Mg citrate, patients exhibited an improvement in IMT
in both left (p = 0.001) and right (p = 0.002) carotids, despite showing a similar index at baseline [64].
Likewise, the use of Mg oxide has yielded similar results; after six months of administration, patients
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had a decrease in IMT, even after adjustment by other factors capable of influencing the outcome, such
as hyperlipidemia, hypertension or diabetes mellitus [65].

6.3. Pulse Pressure

Magnesium has been also shown to influence pulse pressure (PP) in patients with CKD Stages 2–4,
defined in terms of the estimated GFR according to the formula derived from the Modification of Diet
in Renal Disease Study (MDRD) [66]. Pulse pressure was calculated as the difference between systolic
and diastolic blood pressure, and patients were allocated into two groups, with PP values lower and
higher than 50 mmHg, respectively. Both eGFR (p < 0.001) and plasma Mg concentration (p = 0.0001)
differed between both groups. Magnesium levels diminished according to the progression of CKD and
were significantly associated with increased PP (OR = 0.550; 95% CI, 0.305–0.727, p = 0.016).

6.4. Heart Failure

Although not in the setting of renal disease, an association between low serum Mg levels and
the incidence of heart failure has been assessed in a large cohort of the population included in the
ARIC (Atherosclerosis Risk in Community) Study. For this purpose, patients with prevalent heart
failure were excluded from the study. After stratifying according to Mg levels (mean serum Mg
was 1.63 ± 0.16 mEq/L), patients in the lowest category showed higher risk of incident heart failure
(HR = 2.58; 95% CI, 2.23–2.97); this relationship remained significant after subsequent adjustments [67].
It remains to be clarified whether this association is also present when kidney function is diminished.

6.5. Dyslipidemia

Dyslipidemia, also a risk factor for CVD, is exhibited by CKD patients. Studies connecting Mg and
dyslipidemia have yielded inconsistent results. On the one hand, Robles and collaborators observed
a linear correlation between Mg and total cholesterol (r = 0.55, p < 0.001), LDL-cholesterol (r = 0.52,
p < 0.01), VLDL-cholesterol (r = 0.49, p < 0.001) and ApoE (r = 0.52, p < 0.01) [68]. Ansari et al. reported
a positive correlation between Mg and serum lipoprotein A (r = 0.40, p < 0.007), serum HDL (r = 0.31,
p < 0.01) and serum triglycerides (r = 0.35, p < 0.005) in end-stage renal disease [69]. Baradaran and
collaborators also found positive associations between Mg and lipoprotein A (r = 0.65, p < 0.05) and
triglycerides (r = 0.32, p < 0.05), but not with HDL cholesterol [70]. By contrast, Dey et al. found a
relationship between hypomagnesemia and dyslipidemia in patients in CKD Stages 2–5; in particular,
Mg levels were found to be significantly associated with total, HDL, LDL and non-HDL cholesterol;
in addition, all these parameters correlated with CKD severity [71].

6.6. Inflammation

The anti-inflammatory properties of Mg have been repeatedly reported. In experimental
studies, inflammatory markers are elevated following dietary Mg deprivation [72]; if prolonged, the
pro-inflammatory state induced by low Mg might lead to impaired organ function [73]. A relationship
between low Mg status and inflammation in CKD patients has also been suggested [74–76]. In vitro
experimental approaches may help elucidate the mechanisms underlying this effect; in endothelial
cultured cells, Mg has been shown to activate NFκB and promote the secretion of inflammatory
cytokines [77], therefore inducing a proatherogenic and proinflammatory environment [78].

Taken together, these findings suggest a direct relationship between Mg and various parameters
related to cardiovascular health. Nevertheless, interventional studies are desirable for a better
understanding of the impact of the restoration of Mg levels on the cardiovascular health in the
context of renal disease.



Int. J. Mol. Sci. 2018, 19, 664 8 of 19

Table 2. Summary of studies evaluating the effect of magnesium on cardiovascular-related outcomes in CKD patients.

Reference Study Type Clinical Setting No. of Subjects Outcome Conclusion

Sakaguchi et al. [53] Observational Hemodialysis 142,555 Cardiovascular and
non-cardiovascular mortality

Hypomagnesemia predicts cardiovascular
and non-cardiovascular mortality.

Sakaguchi et al. [60] Observational Pre-dialysis 109 Density of CAC CAC is inversely associated with serum
Mg levels.

Bressendorf et al. [61] Interventional Pre-dialysis 250 Progression of CAC Ongoing study.

Salem et al. [62] Observational Dialysis 36 IMT
PWV

In CKD, Mg levels were inversely associated
with the IMT of carotids and the PWV.

Zaher et al. [63] Observational Hemodialysis 25 IMT Mg correlates inversely with IMT in
pediatric CKD.

Turgut et al. [64] Interventional Hemodialysis 47 IMT Carotid IMT improved following
administration of Mg citrate.

Mortazavi et al. [65] Interventional Hemodialysis 54 IMT, FMD, CRP Mg may be involved in the decrease in IMT
in treated patients.

Fragoso et al. [66] Observational Pre-dialysis 80 PP Low Mg levels are independently associated
with higher PP.

Robles et al. [68] Observational Hemodialysis 25 Dyslipidemia Mg is positively associated with total
cholesterol, LDL-C, VLDL-C and ApoB.

Ansari et al. [69] Observational Hemodialysis 50 Dyslipidemia Mg is directly associated with LP-A, HDL-C,
and TG.

Baradaran et al. [70] Observational Hemodialysis 36 Dyslipidemia Positive correlation between Mg and LP-A
and TG.

Dey et al. [71] Observational Pre-dialysis 90 Dyslipidemia Significant association between Mg, total
cholesterol, HDL-C, LDL-C and non-HDL-C.

CAC: coronary artery calcification; Mg: magnesium; IMT: intima-media thickness; PWV: pulse wave velocity; FMD: brachial artery flow-mediated dilatation; CRP: C-reactive protein;
PP: pulse pressure; LDL-C: LDL-cholesterol; VLDL-C: VLDL-cholesterol; ApoB: apolipoprotein B; LP-A: lipoprotein A; HDL-C: HDL-cholesterol; TG: triglycerides.
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7. Hypermagnesemia and Mortality

Hypermagnesemia is uncommon in the normal population given the ability of the kidneys to
remove the excess of Mg. The presence of hypermagnesemia has been associated with higher mortality
in hospitalized [79], emergency [80], intensive care [81,82] and cardiac [83,84] patients.

In the context of renal disease, two different studies have evaluated the mortality risk in
hemodialysis patients with low and high Mg levels, finding better survival rates in the latter [85,86].
Nevertheless, the results from different studies are not totally uniform; in a recent study, the authors
did not report an additional risk for mortality in patients with high Mg levels [87].

8. Magnesium and Renoprotection

A number of pieces of evidence points to the role of Mg in the prevention or reversion of the renal
damage subsequent to the therapeutic administration of nephrotoxic drugs of use in clinical practice.
In spontaneously hypertensive rats, Mg supplementation alone or in combination with potassium has
been shown to protect against the nephrotoxicity induced by cyclosporine [88]. On the other hand,
the use of cisplatin, a chemotherapy agent, is associated with a high risk of acute kidney injury (AKI)
and eventually CKD [89]. Administration of cisplatin causes hypomagnesemia in treated patients [90],
which in turn is one of the mechanisms participating in the nephrotoxicity of cisplatin. In vivo studies
have demonstrated that acute markers of kidney damage (blood urea nitrogen, creatinine and tubule
injury signs) improved after Mg replacement when co-administered; interestingly, Mg does not seem
to affect the antitumoral efficacy of cisplatin [91,92]. The renoprotective effect of Mg has also been
evidenced by Saito and collaborators in cisplatin-treated cancer patients. Premedication with Mg was
associated with lower nephrotoxicity measured in terms of changes in serum creatinine and creatinine
clearance [93]. The same authors investigated the mechanism underlying this effect, finding that Mg
prevents the downregulation of renal TRPM6 while inhibiting the organic cation transporter 2 (Oct2);
both actions lead to prevention of both Mg wasting and accumulation of platinum [94]. In an animal
model of diabetes using multiple low doses of Streptozocin to normal rats, parameters of kidney
damage (elevations in blood urea nitrogen and markers of oxidative stress) were reversed by Mg
treatment [95].

All these pieces of evidence entail an active role of Mg in preserving renal function, following the
administration of certain drugs or even in the context of diabetic nephropathy. However, additional
interventional studies would be desirable to confirm these observations in clinical practice, as well as
to gain understanding of the mechanisms underlying this protective effect.

9. Magnesium and CKD Progression

Low Mg levels have been associated with a high risk of incident CKD or end-stage renal disease
in a population of individuals with eGFR higher than 60 mL/min/1.73 m2 [96]. When CKD is
established, hypomagnesemia predicts loss of kidney function [97]. In diabetic nephropathy, low
plasma Mg has been associated with a faster decline in renal function [98] and with progression to
end-stage renal disease [99]. In addition, levels of Mg determine the progression of CKD induced
by hyperphosphatemia [100], which is a well-known risk factor for the loss of renal function [101].
We have also shown in an experimental model of uremia that dietary Mg halts the progression of renal
disease in an effect that is mediated by a reduction in serum phosphorus levels [102]. However, other
effects independent of phosphorus lowering such as inflammation, oxidative stress, dyslipidemia and
hyperparathyroidism, all of them implicated in the progression of CKD, cannot be ruled out.

10. Experimental Evidence of the Beneficial Effects of Magnesium Replacement in CKD

Experimental evidence suggests a beneficial effect of Mg replacement to manage the complications
associated with the progression of CKD. Such evidence (summarized in Figure 2) has been supported
by both in vivo and in vitro studies and will be described extensively below.
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10.1. Serum Magnesium and PTH Levels

We have previously demonstrated that under conditions of moderate hypocalcemia, Mg
through the activation of the calcium-sensing receptor reduces PTH, and this is accompanied by
the upregulation of both the calcium-sensing receptor and vitamin D receptor [103]. Remarkably, this
finding has been evidenced in the clinical setting by Sakaguchi et al. [104]; the presence of low or high
calcium levels minimized the suppressive effect of Mg on PTH in patients undergoing hemodialysis.
Matsuzaki et al. [105] observed in vivo that the dietary supplementation of Mg produces a decrease in
PTH. Recently, Zhang et al. [106] identified residues in the extracellular domain of the calcium-sensing
receptor key for Mg binding. This finding suggests a direct intervention of Mg on the decrease in PTH.
Therefore, in the context of CKD, Mg replacement may help control PTH levels. In fact, the work by
Navarro et al. [107] showed the inverse association between serum Mg concentration and PTH levels
in dialysis patients.
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10.2. Effect on Vascular Calcification

In the context of CKD, Mg supplementation is of particular interest given its ability to bind
phosphorus and control hyperphosphatemia. In this regard, calcium acetate/magnesium carbonate
has been proven to be effective in controlling serum phosphorus in dialysis patients [108].

Numerous experimental studies have shown that moderately high levels of Mg are instrumental
in decreasing vascular calcifications (VC) [109,110]. Our group has shown recently that in rats with
renal failure, dietary Mg supplementation was not only able to prevent the occurrence of VC, but
also to reverse it. Magnesium reduces VC through the decrease in serum phosphate levels and by
other mechanisms independent of phosphorus, resulting in improved survival [102]. Prevention of
VC by Mg could be explained by two mechanisms: the action of Mg in preventing the formation of
hydroxyapatite (passive process) and a second active mechanism, avoiding the transdifferentiation of
vascular smooth muscle cells into an osteogenic phenotype. Both processes are supported by previous
findings; next, they will be reviewed, and other potential mechanisms will be also proposed.

10.2.1. Passive effect of Magnesium Supplementation

In the context of CKD, Mg exerts a binding effect that allows the reduction in serum phosphorus
and VC. According to several publications, Mg exhibits a greater phosphorus binding capacity than
calcium [111] when displacing the formation of hydroxyapatite towards whitlockite [112]. However,
it has been also suggested that the beneficial effect of Mg is not solely due to a defect in the formation,
composition and structure of hydroxyapatite crystals, but it also involves an active cellular effect [113].
It is interesting to note that hydroxyapatite and whitlockite deposits have been equally observed in the
aorta of CKD patients, suggesting that there must be other additional mechanisms participating in
the beneficial cardiovascular effects of Mg. Schutter and collaborators suggested that the formation of
whitlockite in experimental models of VC is associated with excessive doses of vitamin D [114].

10.2.2. Active Effect of Magnesium Supplementation

Our research group has demonstrated that the addition of Mg prevents and reverses
phosphorus-induced calcification of human aortic vascular muscle cells. This is not merely a passive
effect, but it depends on an active Mg transport across the cell membrane through the TRPM7
channel. Inhibition of TRPM7 with 2-aminoethoxy-diphenylborate (2-APB) or silencing the TRPM7
gene prevented the anti-calcifying effect of Mg [115]. We also showed that the activation of the
Wnt/ß-catenin pathway, which mediates high phosphorus-induced calcification, can be prevented
by moderate amounts of Mg that also increase the levels of Dkk-1, an endogenous inhibitor of the
Wnt/ß-catenin pathway.

Other in vitro studies hypothesize the contribution of other mechanisms to the inhibition
of VC produced by Mg. Thus, Mg supplementation is also associated with changes in the
expression of microRNAs related to calcification [116]. miR-30b, miR-133a and miR-143 are
downregulated in phosphorus-induced calcification, whereas the addition of Mg restored (miR-30b)
or increased (miR-133a, miR-143) their expression. Interestingly, Mg in vitro also avoids the
decrease in the expression of molecules such as MGP, osteopontin or BMP-7 [117,118], all of them
calcification inhibitors.

10.3. Other Effects of Magnesium

In addition to these passive and active effects on phosphorus control and calcification, there is
another set of actions key for Mg to develop its beneficial effects. We have shown that 14 days of
Mg supplementation reduces serum creatinine in an experimental model of calcification, although
these effects may be subordinated to the reductions in serum phosphorus, VC and PTH control [102].
In this model, the intraperitoneal administration of Mg resulted in a lesser degree of aortic calcification,
despite no changes in serum phosphorus, which suggests an independent effect of Mg beyond its
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phosphorus binding action. On the other hand, human vein umbilical cells (HUVEC) treated with
TNF alpha exhibit higher levels of BMP2 and p65, pro-calcificant and pro-inflammatory proteins
respectively, which were reduced with the addition of Mg [102]. In this regard, several pieces of
evidence point out that Mg deficiency promotes the generation of reactive species of oxygen and
oxidative stress in endothelium [31,119]. Other works also support this beneficial action of Mg at
the endothelial level in the context of atherosclerosis [120,121]. These findings, along with additional
anti-inflammatory [122] and anti-apoptotic [123] actions, help to understand the complex mechanisms
whereby Mg acts at the cardiovascular level.

10.4. Magnesium and Bone

Information on the bone effects of Mg is not uniform. It is recognized that a precise control of
Mg homeostasis is essential for bone health [124]. Mg deficiency affects crystal formation, which
contributes to osteoporosis, PTH activity and promotes low-grade inflammation. By contrast,
little is known about the pathogenesis of the mineralization defects occurring in the setting of
hypermagnesemia. It has been also demonstrated that Mg enhances osteogenesis of mesenchymal stem
cells [125]. Within the context of biomaterials science, there is a growing interest in fixing in ceramic
biomaterials or scaffolds made of alloys of Mg to improve osteogenesis and the osteointegration of
the prosthesis used in traumatology surgery [126]. The dual effect of Mg supplementation in human
osteoblasts has been recently reported, finding that concentrations higher than 4 mM of Mg decrease
osteogenesis, while moderate concentrations of Mg increase mineralization [127]. These results are in
line with other in vivo observations recently published [102].

In summary, experimental evidence suggests that oral Mg supplementation reduces serum
phosphorus and has a direct protective effect against VC by inhibiting pro-calcificant pathways and
reducing apoptotic and inflammatory cellular response.

11. Risk of Magnesium Overdose

Magnesium intoxication is not frequent. It is important to differentiate the risk of hypermagnesemia
due to oral Mg supplementation from intravenous Mg treatment.

There are some isolated iatrogenic parenteral overdoses of Mg reported in the literature that have
resulted in cardiopulmonary arrest. Manifestations of hypermagnesemia are dose-related. Minor side
effects of parenteral Mg include flushing, warmth, nausea, headache and lightheadedness. Major,
life-threatening effects involve the cardiovascular and neuromuscular systems. Hypermagnesemia is
associated with absent deep tendon reflexes, apnea, coma, complete heart block and asystole, the latter
with Mg concentrations above 8 mM [128].

Magnesium supplementation is well tolerated, although it may cause gastrointestinal symptoms
including diarrhea, nausea and vomiting [129]. In a current clinical trial concerning oral magnesium
supplementation in 34 patients with CKD Stages 3–4 during eight weeks, intracellular Mg was not
increased, and there were no incidences of symptomatic hypermagnesemia. Magnesium supplementation
was safe and well tolerated with no adverse events related to magnesium treatment [130].

Furthermore, in terms of Mg toxicity, pharmacological interactions should be taken into account.
Concomitant oral intake of Mg may influence the absorption of aminoglycosides, bisphosphonates,
calcium channel blockers, fluoroquinolones, skeletal muscle relaxants and tetracyclines.

12. Are We Ready for Magnesium Supplements in CKD?

Being one of the most abundant elements in the organism, Mg is essential for the normal
development of a wide number of cellular functions. Magnesium deficiency is associated with
deleterious effects, both at the cellular and systemic level. At the cellular level, low Mg is related to
the occurrence of apoptosis and increased oxidative stress. At the systemic level, it is important to
emphasize the association established between decreased Mg levels and CVD. Such a relationship has
been repeatedly reported in the general population, but also in the context of CKD in terms of VC, IMT,
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PP and dyslipidemia, which is also related to the appearance of cardiovascular events. Taken together,
experimental evidence strongly suggests a beneficial effect of the restoration of Mg levels when it
comes to cardiovascular health. However, the vast majority of observations have been originated in
experimental or observational studies. Therefore, there is an unmet need for prospective clinical trials
that help elucidate the impact of Mg supplements on the cardiovascular health of CKD patients.
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