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13 Abstract

14

15 Wild olive (Olea europaea subsp. europaea var. sylvestris) is an important component 

16 of Mediterranean forests and a key genetic source for olive improvement programs. 

17 Since 2009, a severe decline caused by Phytophthora cryptogea and P. megasperma 

18 was detected in a protected wild olive forest of high ecological value (Dehesa de Abajo, 

19 Seville, Spain). In this natural forest, samplings of roots and soil were done on 25 

20 symptomatic wild-olives in 2014 and 2015. Apart from the already known P. cryptogea 

21 A1 and P. megasperma, a third Phytopththora species was consistently isolated from 

22 symptomatic wild-olive rootlets. These isolates conformed morphologically with the 

23 newly described species P. oleae and were confirmed by analysis of their ITS regions 

24 and Cox-1 sequences. Temperature-growth relationships showed a maximum growth at 

25 19.9ºC on CA medium, being the lowest-temperature Phytophthora spp. infecting wild 

26 olive roots. Pathogenicity was confirmed on 1 year-old healthy wild olive seedlings and 

27 was similar respect to the previously known pathogenic Phytophthoras. As temperature 

28 requirements are quite different, the three Phytophthora spp. may be active against wild 
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29 olive roots in different seasons. However, the prevalence of P. oleae infecting wild 

30 olives in the last years could be due to its introduction as a new invasive pathogen. The 

31 likely invasive nature of P. oleae, together with increasing rain episodes concentrated in 

32 short periods frequent in southern Spain, would allow outbreak infections in wild olive 

33 forests, also putting at risk cultivated olive orchards.

34

35 Keywords: decline, invasive pathogen, Natural Reserve, Olea europaea var. sylvestris,  

36

37 Introduction 

38

39 Olive (Olea europaea subsp. europaea) is a fruit crop widely distributed in the 

40 Mediterranean region with economically important cultivars and also wild genotypes 

41 growing in natural forests. In Spain, the wild form (O. europaea subsp. europaea var. 

42 sylvestris) represents a distinct botanical variety of the subspecies europaea and is 

43 considered the best bioindicator of the Mediterranean Floristic Region (Rubio de Casas 

44 et al., 2002). Moreover, wild olives represent the main source of genetic traits for 

45 improvement of cultivated forms, commonly used in breeding programs for the high 

46 degree of resistance to diseases showed by some genotypes (Arias-Calderón et al., 

47 2015). 

48 Recently, a wild olive root rot caused by Phytophthora megasperma and P. cryptogea 

49 was reported in a Natural Reserve in southern Spain (Dehesa de Abajo, Seville) 

50 affecting near 5 ha of wild olive woodland of high ecological value (González et al 

51 2017a). This forest grows around a natural pond with marked fluctuations in water 

52 tables due to the seasonal distribution of rainfall, alternating seasonal soil flooding and 

53 drought periods. As expected for Phytophthora soilborne pathogens, affected trees 
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54 exhibited different degree of symptoms depending on their distribution: moderate 

55 defoliation uphills, while severe defoliation and tree death were recorded downhills. 

56 Phytophthora megasperma was the only species isolated from declining wild olives in 

57 2009. However, P. cryptogea was the main species associated with wild olive root 

58 disease in 2013 (González et al., 2017a). It was hypothesized that a higher-temperature 

59 P. cryptogea could replace the lower-temperature P. megasperma as a result of the 

60 global increase in temperatures in the Mediterranean region due to global climate 

61 change (Lindner et al., 2010). Given the intrinsic ecological and genetic value of wild 

62 olive populations, the main objective of this work was to know the evolution of 

63 Phytophthora spp. associated with the root disease, clarifying the role of temperature in 

64 the disease aetiology. Additionally, a new Phytophthora spp. associated with necrotic 

65 roots was isolated, identified, temperature-characterized, and checked for pathogenicity 

66 on wild olive.

67

68 Materials and methods

69

70 Samplings and isolations

71

72 In November 2014 and November 2015, two field surveys were carried out at the 

73 Natural Reserve "Dehesa de Abajo" (Seville, Spain, UTM 29: 37º12’33’’N; 

74 6º10’16’’W). Soil is a mixture of gravel and sand with rainfall rates averaging 648 mm 

75 per year, mainly distributed in autumn and winter (Consejería de Agricultura, Pesca y 

76 Desarrollo Rural, 2017). Cardinal temperatures (minimum and maximum) recorded in 

77 the period 2001-2015 at the nearest meteorological station (La Puebla del Río II 
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78 Meteorological station; 37º04’48’’N, 06º02’47’’W, altitude 41 m.a.s.l.) are summarized 

79 in Table 1.  

80 Using the methodology described in González et al. (2017a), samples of rootlets and 

81 rhizosphere soil were taken at approximately 1 m distance from the trunk at 10–30 cm 

82 depth of a total of 25 symptomatic (crown wilting or/and defoliation) wild olives. 

83 Samples from different trees were independently processed. For each sample, rotten 

84 feeder roots were cut in 3-4 mm segments, washed under running water for 2 h, and 

85 directly plated on NARPH medium (Hüberli et al., 2000). Soil samples were air dried 

86 and sieved (2 mm) and isolations from soil were performed using pieces of newly 

87 formed olive leaves as baits, according with González et al. (2017a). Six beakers per 

88 sample with a soil-water mixture (15:200 w:vol) and six floating baits each one, were 

89 incubated for 4 days at 22ºC under 12 h photoperiod. After the incubation period, the 

90 leaf pieces were washed and plated in Petri dishes containing NARPH medium. All the 

91 dishes (roots and soil baits) were incubated at 22ºC in the dark for 4 days. Colonies 

92 obtained from damaged roots and soil baits were grouped according to their 

93 morphology and transferred to 20% carrot agar (CA) medium. Five isolates per colony 

94 morphology were selected among the pure cultures obtained for molecular and 

95 morphological identification and growth-temperature characterization.

96

97 DNA extraction, amplification and sequencing 

98

99 DNA of the isolates was obtained by harvesting the mycelium from 1-week-old pure 

100 cultures grown on PDA at 20°C in the dark. DNA was extracted using the PowerSoil 

101 DNeasy kit (Qiagen) following the manufacturer’s protocol. The internal transcribed 

102 spacer (ITS1-5.8S-ITS2) region of the rDNA was amplified by PCR using the universal 
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103 primers ITS-6 (Cooke et al., 2000) and ITS-4 (White et al., 1990). The PCR reaction 

104 conditions used were an initial denaturing step of 94ºC for 2 min followed by 35 cycles 

105 of 94ºC for 30 s, annealing at 55ºC for 30 s and an extension at 72ºC for 45 s, with a 

106 final extension of 72ºC for 10 min. The mitochondrial cox1 gene was amplified using 

107 the primers OomCoxI-Levup and Fm85mod (Robideau et al., 2011) and were 

108 sequenced with the same primers. The PCR reaction conditions for cox 1 consisted of 3 

109 min at 94°C followed by 35 cycles of 30 s at 94°C, 30 s at 50°C and 60 s at 72°C, with a 

110 final extension of 5 min at 72°C (Ruano-Rosa et al., 2018).

111

112 Morphological and growth-temperature characterization

113

114 For isolates molecularly identified but not previously associated with wild olive root rot, 

115 a morphological and growth-temperature characterization were carried out.

116 To characterize colony morphologies, the five selected isolates were grown at 20ºC in 

117 the dark on CA and PDA medium for 5 days to describe colony colour, pattern, edge 

118 shape and presence of aerial mycelium.

119 To describe sexual structures (oogonia, antheridia and oospores), isolates were 

120 individually transferred onto CA medium, incubated at 22ºC in the dark, and 

121 periodically observed under the inverted microscope (Olympus IMT-2, 40×). When 

122 sexual reproductive structures were detected in single cultures (after 10 days of 

123 incubation), small pieces of agar were placed on glass slides, stained with acid fuchsin 

124 in lactophenol (0.0005%) and observed under the microscope (Nikon Eclipse 80i, 

125 100×). For each isolate, 30 mature oogonia, 30 antheridia and 30 oospores were selected 

126 and measured (NIS-Elements D 2.30, Nikon Instruments): oogonium and oospore 

127 diameter, antheridium length and thickness of the oospore wall.
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128 To characterize asexual structures (sporangia), small CA plugs (5 mm diameter) from 

129 the edges of actively growing colonies were placed in the centre of 5-cm-diameter Petri 

130 dishes, and after that, sterilized saline solution (MSS, Chen & Zentmyer, 1970) was 

131 added to just cover the agar plugs. Petri dishes were incubated in darkness at 20ºC. 

132 Every 24 h, the saline solution was removed and replaced with fresh solution. After 4 

133 days of incubation, mature sporangia present in the floating mycelium were removed 

134 and placed on glass microscope slides and stained with acid fuchsin in lactophenol 

135 (0.0005%) for observation under the microscope (Nikon Eclipse 80i, 100×). For each 

136 isolate, 30 mature sporangia were randomly chosen, and the following parameters were 

137 measured (NIS-Elements D 2.30, Nikon Instruments): sporangium length and breadth, 

138 and pore width. Other sporangial characteristics such as shape, presence or absence of 

139 papilla, were also recorded.  

140 For growth rate tests, agar plugs of each isolate were plated in 9 cm Petri dishes with 

141 CA or PDA medium and incubated in the dark at 5, 10, 15, 20, 25, 30 or 35ºC. Three 

142 replicates (dishes) per isolate were prepared. Colony radius was measured daily until the 

143 colonies covered the agar surface and growth rate per day was calculated for each 

144 isolate, culture medium and incubation temperature. Maximum average data were 

145 adjusted to a regression curve using Statistix 10.0 for Windows (Analytical Software, 

146 Tallahassee, FL). The best polynomial model was chosen from several combinations of 

147 terms, based on the significance of the estimated parameters (p < 0.05), coefficients of 

148 determination (R2), coefficients of determination adjusted by degrees of freedom (Ra
2), 

149 and pattern of residuals. Maximum growth rates and optimum growth temperatures 

150 were estimated over the regression curves obtained.

151

152 Pathogenicity tests
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153

154 Healthy wild olive seedlings (1-year-old) from a forest nursery of the Andalusian 

155 Government (Vivero San Jerónimo, Seville) were inoculated with one isolate of the 

156 Phytophthora spp. newly associated with wild olive root disease (Po group). To prepare 

157 the inoculum, colonized agar plugs were placed in 9 cm Petri dishes containing 20 ml of 

158 20% carrot broth and incubated at 22ºC in the dark for 20 days. The mycelium produced 

159 was then filtered, washed, and shaken in an electric mixer (Osterizer pulse-matic 16) 

160 with sterile water for 3 min at the highest speed to break mycelium masses and liberate 

161 oospores. Oospore concentration was estimated by counting in a Neubauer chamber and 

162 adjusted to 2.2×104 oospores×ml-l. For inoculation, 50 ml of this inoculum was 

163 homogeneously added to the root ball of each seedling, before transferring them into 

164 plastic pots containing 2 l of soil (sand:lime:peat 1:1:1 vol.). Ten seedlings (replicates) 

165 were inoculated and 10 additional seedlings (uninoculated controls) were treated in the 

166 same way, but only 50 ml of sterile water was applied to their root balls. All the pots 

167 were incubated in an acclimatized greenhouse and flooded 2 days per week (Romero et 

168 al., 2007). Foliar symptoms were assessed weekly for each seedling based on a 0–4 

169 scale, according to the percentage of yellowing, wilted foliage or defoliation recorded (0 

170 = 0%, 1 = 1-33%, 2 = 34-66%, 3 = more than 67% and 4 = dead foliage) (Sánchez et 

171 al., 1998; González et al., 2017a). After 14 weeks, the relative area under the disease 

172 progress curve (rAUDPC) was calculated as percentage regarding the potential 

173 maximum value (Campbell & Madden, 1990). At this moment, root symptoms were 

174 also assessed according to a similar 0-4 scale referred to root necrosis or rootlet absence 

175 percentage as follows: 0 = 0%, 1 = 1–33%, 2 = 34–66%, 3 = more than 67%, 4 = dead 

176 root (Sánchez et al., 1998; González et al., 2017a).
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177 Data on foliar and root symptoms at the end of the experiment and rAUDPCs were 

178 tested for homocedasticity by the Levene’s test and then, a one-way ANOVA was 

179 performed, and mean values compared by the Tukey’s HSD test for α = 0.05 (Statistix 

180 software 10.0).

181 Additionally, root segments from inoculated or control plants were carefully washed 

182 and plated on NARPH medium for re-isolation of the pathogen.

183

184 Results

185

186 Site temperatures

187

188 Table 1 shows the mean values of minimum and maximum temperatures recorded at La 

189 Puebla del Río II Meteorological station, grouped by season, for the period 2007-2015 

190 and the wider historical temperature series available (2001-2015). It is remarkable the 

191 occurrence of two exceptional cold episodes suffered in winter 2007 (2.9ºC) and winter 

192 2012 (3.1ºC) in comparison with the mean of minimum temperatures registered in the 

193 historical series (6.1ºC).  

194

195 Species identification

196

197 Three different groups of isolates respect to their colony morphology on CA were found 

198 (Pm, Pc, and Po). The sequences of the ITS rDNA region (99% of homology with 

199 GenBank) conformed with P. megasperma (Pm) and P. cryptogea (Pc) as described in 

200 Gonzalez et al (2017a).
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201 The third group of isolates (Po) was morphologically described since it was not 

202 previously known as associated with wild olive root rot. All these isolates showed 

203 colonies with scarce aerial mycelium and chrysanthemum growth pattern (Table 2). The 

204 sporangia of Po group were rarely produced in CA medium but very abundant in MSS 

205 saline solution. Gametangia were produced abundantly in CA single culture. 

206 Morphological characteristics of Po isolates are summarized in Table 2, and they were 

207 in good agreement with the description of P. citricola complex (Jung & Burgess, 2009), 

208 which includes P. plurivora, P. multivora and P. citricola. The sequence analyses of 

209 ITS rDNA regions conformed with P. plurivora, but only with a 95% homology with 

210 sequences in GenBank. Following the recent description of a new Phytophthora species, 

211 P. oleae (Ruano-Rosa et al., 2018), it was found that morphological data obtained for 

212 Po isolates were in a better agreement with features issued for P. oleae and, moreover, 

213 ITS rDNA regions and Cox-1 gene sequences conformed with P. oleae with a 100% 

214 homology.

215

216 Growth-temperature relationships

217

218 All five Po isolates had similar cardinal temperatures and growth rates at all 

219 temperatures. A 3rd degree polynomic model was selected: y = aT3 + bT2 + cT + d, as 

220 the best expression of growth rate versus incubation temperature, with y being the 

221 growth rate, T = incubation temperature, and a, b, c and d, the regression constants. 

222 According to the adjusted curve: y = -0.0013 T3 + 0.0324 T2 + 0.253 T – 1.85 (R2 = 

223 0.9932), the estimated maximum growth rate for P. oleae isolates in CA medium was 

224 5.8 mm day-1 at the optimum temperature, estimated in 19.9ºC (Figure 1a). The 

225 maximum growth rate in PDA medium was 2.5 mm day-1 at the optimum temperature, 
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226 estimated in 20.6ºC (Figure 1b) according with the adjusted curve y = -0.0004 T3 + 

227 0.0084 T2 + 0.164 T – 0.9933 (R2 = 0.9726). Isolates did not grow neither at 5ºC nor at 

228 30ºC in both culture media.

229

230 Isolation frequencies

231

232 Isolation frequencies (percentage of trees with positive isolation) of Phytophthora spp. 

233 obtained in 2014 and 2015 from root and soil samples are in Figure 2. All the three 

234 Phytopththora spp. (P. cryptogea, P. megasperma and P. oleae) were isolated from 

235 roots and rhizosphere soil in both samplings. In 2014, P. cryptogea was the main 

236 species associated with symptomatic roots (44% of positive isolation) and soil samples 

237 (36% of positive isolation); while in 2015 it was replaced by P. oleae as the main 

238 species in roots (36% of positive isolation) and rhizosphere (40% of positive isolation). 

239 Phytophthora megasperma was isolated from roots and soil in both samplings, but 

240 always at low frequencies (Figure 2). More than one Phytophthora spp. were recovered 

241 from roots of the same tree at the same sampling, but only from four individuals.

242

243 Pathogenicity

244

245 The inoculated wild olive seedlings showed foliar symptoms like those observed in the 

246 field: foliar yellowing and wilting, starting at the leaf edges and gradually spreading 

247 towards the centre, drop of wilted leaves and twigs dieback. Necrosis and absence of 

248 feeder roots were equally observed in the field and in inoculated seedlings. 

249 Average values of foliar symptoms recorded weekly are in Figure 3a. Fourteen weeks 

250 after inoculation, final foliar symptoms were significantly higher for wild olives 
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251 inoculated with P. oleae in comparison with uninoculated controls (F = 17.59, p = 

252 0.0005). Respect to the disease progression, ANOVA analysis and comparison of means 

253 also indicated that average rAUDPC recorded for foliar symptoms was significantly 

254 higher in seedlings inoculated with P. oleae than in uninoculated control seedlings (F = 

255 19.80; p = 0.0003) (Figure 3b). 

256 Mean values of root symptoms at the end of the experiment are in Figure 3c. ANOVA 

257 showed significant differences between inoculated and uninoculated wild olives (F = 

258 56.18; p < 0.0001), and the Tukey's test revealed that P. oleae caused a level of root 

259 symptoms significantly higher than those recorded for controls. Furthermore, P. oleae 

260 was consistently re-isolated from necrotic roots from inoculated seedlings (16.6% of 

261 positive isolation). No Phytophthora spp. were isolated from roots of uninoculated 

262 control seedlings.

263

264 Discussion

265

266 The present study shows P. oleae as a new pathogen for wild olive, causing root rot in a 

267 natural forest at southwestern Spain. This species is added to the other two 

268 Phytophthora species (P. cryptogea and P. megasperma) already known causing root 

269 rot in wild olive (González et al., 2017a). However, different Phytophthora species have 

270 been described causing root rot in olive cultivars in different parts of the world: P. 

271 citricola (Teviotdale, 2005), P. drechsleri (Teviotdale, 2005), P. inundata (Sánchez-

272 Hernández et al., 2001), P. megasperma (Sánchez-Hernández et al., 2001), P. 

273 nicotianae (Vettraino et al., 2009) and P. palmivora (Vettraino et al., 2009).

274 Initially, Po isolates were tentatively identified as P. plurivora (González et al., 2017b), 

275 because of their similar morphology (Jung & Burgess, 2009), although sequence 
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276 homology appeared not strong enough (only 95%). In addition, Po wild olive isolates 

277 showed a low optimum temperature (20ºC) when compared with the 25ºC observed by 

278 Jung & Burguess (2009) for P. plurivora. After the recent description of P. oleae as 

279 cause of fruit rot in cultivated olives in southern Italy (Ruano-Rosa et al., 2018), a new 

280 molecular analysis (ITS and cox-1 regions) confirmed the identification of Po isolates 

281 as P. oleae. It is frequent to find records of a Phytophthora spp. causing fruit rots and 

282 root rots on woody plants; sometimes in different locations, as P. palmivora causing 

283 pomegranate fruit rot in India and Greece (Erwin and Ribeiro, 1996; Markakis et al., 

284 2017) but crown and root rot in Turkey (Türkölmez et al., 2016); and sometimes both 

285 kind of symptoms occur simultaneously, as P. citrophthora causing fruit and root rot on 

286 Citrus spp. (Erwin and Ribeiro, 1996); or P. parasitica as pathogen on papaya fruits and 

287 roots in Hawaii (Hunter & Buddengagen 1969). 

288 In previous samplings carried out in the same area between 2009 and 2013, González et 

289 al. (2017a) hypothesized that the root rot pathogen P. cryptogea, a high-temperature 

290 species, could be replacing a low-temperature one (P. megasperma) infecting wild-

291 olives, considering a global increase in temperatures in the Mediterranean Basin 

292 (Lindner et al., 2010). However, the unexpected appearance of a new dominant species 

293 of low-temperature as P. oleae, led us to consider that it could be favoured by the 

294 extremely cold winter temperatures suffered in 2012 (minimum temperatures of 3.1ºC 

295 compared with the historical minimum mean of 6.1ºC), likely explaining the prevalence 

296 of this species in 2015. The prevalence of two low-temperature species infecting wild 

297 olive roots following exceptionally cold winter temperatures 2 years ago, as P. 

298 megasperma in 2009 (González et al., 2017a) and P. oleae in 2015, could be 

299 hypothesized as likely unusual considering the long, hot and dry summers prevailing in 

300 the area. However, some Phytophthora spp. with low optimum temperature and ability 
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301 to form thick-walled oospores and abundant sporangia, have been described as an 

302 adaptation to Mediterranean climates with long, hot and dry summer and wet winters 

303 (Brazee et al., 2016; Jung et al., 2017), including P. oleae (Ruano-Rosa et al., 2018). 

304 According with this hypothesis, P. oleae would be able to survive severe summer 

305 droughts in its dormant state (oospore) and rapidly resume growth and sporulation after 

306 autumn-winter rainfalls, acquiring advantage to compete for wild olive root infection 

307 when temperatures are cooler than usual. However, the prevalence of P. oleae infecting 

308 wild olives in the last years could also be a result of its arrival to Spanish natural forests 

309 as a new invasive Phythophthora pathogen. Phytophthora oleae was firstly described 

310 causing a soft rot of mature olive fruits in a restricted area in Italy (Ruano-Rosa et al., 

311 2018) and, to our knowledge, this is the only report of this pathogen worldwide. Some 

312 of the most destructive and well-documented epidemics of trees and forests are caused 

313 by alien Phytophthora spp. Moreover, most of the ca. 150 currently known species of 

314 Phytophthora were unknown to science before they turned up in other continents as 

315 invasive aggressive pathogens of native plants or plantation crops (Jung et al., 2016). 

316 Due to a lack of co-evolution between the likely newly introduced P. oleae and wild 

317 olive, this endemic host can be highly susceptible to the pathogen and this fact could 

318 explain why it is replacing native P. megasperma and P. cryptogea in natural forests. 

319 Parameters commonly used as indirect indicators of the alien origin of a pathogen 

320 include consistent association with diseased common indigenous plant species and 

321 proven high aggressiveness to these plants in pathogenicity trials, as determined for P. 

322 oleae causing root rot of wild olive or fruit rot of cultivated olive (Ruano-Rosa et al., 

323 2018). An stronger indicator is a low genetic variability and close phylogenetic 

324 relatedness to other non-native species (Jung et al., 2016). Identical cox1 and ITS1-

325 5.8S-ITS2 region sequences were determined within the eight isolates characterized by 
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326 Ruano-Rosa et al. (2018), with only one isolate showing a single base insertion in ITS1. 

327 Additionally, the five isolates characterized in this work exhibit identical cox1 and ITS 

328 sequences. Despite the low genetic variability exhibited by P. oleae, which points to its 

329 alien origin, the low number of isolates analysed, together with their small area of 

330 provenance in Italy (two olive orchards in the same province) and Spain (one wild olive 

331 forest), make neccesary additional research to determine 

332 For plant biosecurity and disease management, it is of utmost importance to know 

333 whether P. oleae is indigenous in Europe or it must be considered as a new alien 

334 invasive pathogen. Moreover, to know it possible alien origin is of utmost importance to 

335 assess the risk of may be spreading from natural forest stands to olive plantation crops 

336 in Spain, although it will not necessarily successfully establish.

337 The likely invasive nature of P. oleae, together with increasing rain episodes 

338 concentrated in short periods frequent in southern Spain, would allow outbreak 

339 infections in wild olive forests, also putting at risk cultivated olive orchards.

340
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450 Figure 1 Growth rate patterns for Phytophthora oleae isolated from wild oilives 

451 growing on CA (a) and PDA (b) media. Lines represent the adjusted third degree 

452 polynomic model on CA (y = -0.0013 T3 + 0.0324 T2 + 0.253 T – 1.85; R2 = 0.9932) 

453 and PDA (y = -0.0004 T3 + 0.0084 T2 + 0.164 T – 0.9933; R2 = 0.9726). Dots are the 

454 main values of the observed growth rates. Arrows indicate the estimated optimum 

455 growth temperature on CA (19.9ºC) and PDA (20.6ºC).

456

457 Figure 2 Percentage of trees with positive isolation of Phytophthora oleae (Po), P. 

458 cryptogea (Pc) or P. megasperma (Pm) from roots (a) and rhizosphere soil (b) of 

459 symptomatic wild olives sampled in 2014 and 2015.

460

461 Figure 3 Average values and standard errors of foliar symptoms (a), relative area under 

462 the disease progress curve (rAUDPC) (b), and root symptoms (c), recorded on wild 

463 olives inoculated with P. oleae and submitted to periodical soil flooding for 14 weeks. 

464 For each graph, values with different letters differ significantly according with Tukey’s 

465 HSD test (p < 0.05).
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Table 1 Average seasonally minimal and maximal temperatures (ºC) between 2007 and 
2015. Data obtained from ‘La Puebla del Río II’ Meteorological station (37º 04’ 48’’ N, 
06º 02’ 47’’ W), Seville, Spain.

YearSeason

2007 2008 2009 2010 2011 2012 2013 2014 2015

Mean
(2001-2015)

Winter (Jan-Mar) 2.9 5.6 5.8 7.9 7.0 3.1 6.8 6.8 5.1 6.1

Spring (Apr-Jun) 10.8 12.5 12.1 13.0 14.9 13.2 12.1 13.2 14.0 13.2

Summer (Jul-Sep) 16.1 16.8 17.0 17.9 17.4 16.7 18.0 16.6 16.9 17.3

M
ea

n 
of

 
m

in
im

al
s

Autumn (Oct-Dec) 6.8 7.2 10.2 9.1 9.4 10.4 8.6 10.2 11.0 9.5

Winter (Jan-Mar) 15.2 18.2 17.4 16.2 17.4 18.6 16.6 17.9 18.1 17.4

Spring (Apr-Jun) 24.7 26.2 27.0 26.3 28.5 27.7 26.3 27.5 28.7 27.0

Summer (Jul-Sep) 31.2 31.5 32.6 32.9 32.1 32.2 32.3 30.3 31.9 31.7

M
ea

n 
of

 
m

ax
im

al
s

Autumn (Oct-Dec) 19.3 18.6 21.8 19.4 21.5 20.2 20.9 20.9 21.4 20.3
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Table 2 Morphological characteristics of Po isolates (Phytophthora oleae)

Colony morphology on CA (6 days at 20º C) Chrysanthemum

Sexual system Homothallic
Oogonia diameter (µm ± SE) 28.8 ± 0.3
Oospores Aplerotic

Diameter (µm ± SE) 26.8 ± 0.2
Oospore wall thickness (µm ± SE) 1.5 ± 0.1
Antheridia

Amphigynous 0%
Paragynous 100%
Length (µm ± SE) 6.3 ± 0.3

Oogonium diam:antheridium length ratio 4.6
Sporangia

Shape Obpyriform, ovoid
Length (µm ± SE) 39.1 ± 0.3
Breadth (µm ± SE) 28.2 ± 0.3
Length: breadth ratio 1.4
Papilla Semi-papillate

             Pore width (µm ± SE) 6.6 ± 0.1
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