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Abstract: Urothelial carcinoma (UC) is a frequent cause of cancer-related deaths worldwide. 
Metastatic UC has been historically associated with poor prognosis, with a median overall survival 
of approximately 15 months and a 5-year survival rate of 18%. Although platinum-based 
chemotherapy remains the mainstay of medical treatment for patients with metastatic UC, 
chemotherapy clinical trials produced modest benefit with short-lived, disappointing responses. In 
recent years, the better understanding of the role of immune system in cancer control has led to the 
development and approval of several immunotherapeutic approaches in UC therapy, where 
immune checkpoint inhibitors have been revolutionizing the treatment of metastatic UC. Because 
of a better tumor molecular profiling, FGFR inhibitors, PARP inhibitors, anti-HER2 agents, and 
antibody drug conjugates targeting Nectin-4 are also emerging as new therapeutic options. 
Moreover, a wide number of trials is ongoing with the aim to evaluate several other alterations and 
pathways as new potential targets in metastatic UC. In this review, we will discuss the recent 
advances and highlight future directions of the medical treatment of UC, with a particular focus on 
recently published data and ongoing active and recruiting trials.  
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1. Introduction 

Urothelial carcinoma (UC) is a common cancer worldwide, with nearly half a million of new 
diagnoses annually [1]. Although UC includes a group of tumors of the bladder, renal pelvis, ureter 
and urethra, more than 90% of UCs occurs in the lower urinary tract, therefore involving urinary 
bladder and, less often, urethra [2]. About 70–75% of patients at diagnosis are affected by 
non-muscle-invasive bladder cancer (NMIBC) while more than 25% of cases are already 
muscle-invasive bladder cancer (MIBC) or metastatic forms [3]. Despite recent improvements in the 
field of medical oncology, the prognosis of patients with advanced or metastatic UC remains dismal, 
with a median overall survival (OS) of approximately 15 months from diagnosis [4]. In the last 
twenty years, front-line cisplatin-based chemotherapy represented the mainstay of palliative 
treatment for UC, with combinations such as gemcitabine plus cisplatin (GC) and methotrexate, 
vinblastine, doxorubicin, and cisplatin (M-VAC) as the cornerstones of standard treatment in 
advanced or metastatic UC [5–7]. Although GC and M-VAC regimens showed similar outcomes in 
terms of OS and time to treatment failure (TTF), GC is commonly preferred over M-VAC on the basis 
of lower mucosal and hematological toxicity [5–7]. Nevertheless, most patients are 
cisplatin-ineligible because of inadequate renal function, poor Eastern Cooperative Oncology Group 
(ECOG) performance status, peripheral neuropathy, old age and/or other underlying comorbidities, 
and thus, cisplatin is usually replaced by carboplatin in unfit patients, as we shall see later [8]. 
Unfortunately, after the failure of first-line treatments, further therapies have yielded poor response 
rates and the overall results obtained with conventional cytotoxic agents (as monotherapy or in 
combination) have been far from being satisfactory since UC patients historically carried a median 
OS of approximately 12–17 months [9]. Thus, there is an urgent need for novel, more effective 
treatment options in advanced or metastatic UC. 

Recent phase I to III studies with drugs targeting immune checkpoints and different molecular 
pathways of UC are ongoing and some were published in the last three years [10]. These novel 
agents primarily include immune checkpoint inhibitors (ICIs), tyrosine kinase inhibitors (TKIs) 
targeting fibroblast growth factor receptor (FGFR), and antibody-drug conjugates (ADCs) directed 
against Nectin-4 [11,12]; however, many other alterations and pathways are also emerging as new 
potential targets [13]. In this paper, we provide a comprehensive review of recent trials and the 
current state of ongoing active and recruiting Phase I, II, and III trials according to clinicaltrial.gov, 
looking into the future of the rapidly evolving landscape of medical treatment for advanced or 
metastatic UC. 

We performed a research on Pubmed/Medline, Cochrane library and Scopus using the keyword 
“urothelial carcinoma“ OR “bladder carcinoma” OR “bladder urothelial carcinoma” OR “bladder 
cancer” OR “bladder neoplasm.” We selected pivotal registration studies. We also selected the most 
relevant and pertinent studies considering quality of the studies in terms of their applicability, how 
they were conducted, statistical analysis, number of patients enrolled, outcomes. For ongoing 
clinical trials, we searched in the clinicaltrials.gov database for recruiting and active, not recruiting 
trials, using the following keywords: “urothelial carcinoma“ OR “bladder carcinoma” OR “bladder 
urothelial carcinoma” OR “bladder cancer” OR “bladder neoplasm.” We restricted our research to 
phase 1, 2, or 3 trials focused on the metastatic/advanced setting. 

2. Treatment Strategies: State-of-the-Art 

2.1. Immune Checkpoint Inhibitors 

The advent of ICIs blocking the interaction of Programmed Death 1 (PD-1) and Cytotoxic 
T-Lymphocyte Antigen 4 (CTLA-4) with their specific ligands has recently revolutionized the 
treatment of several hematological and solid malignancies (Figure 1) [14–16]. Outstandingly, ICIs 
have challenged previous treatment paradigms of most solid tumors, including the therapeutic 
decision-making approach to advanced or metastatic UC, in the first-line setting for 
cisplatin-ineligible patients as well as in the post-platinum setting [17,18]. Given the well-known 
activity of topical instillation of Bacillus of Calmette-Guérin (BCG) in high-risk, non-muscle invasive 
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disease, UC immediately appeared as a suitable candidate for modern immunotherapy [19]; 
moreover, UC is known to be a highly antigenic malignancy, given the high rates of DNA alterations 
and mutations leading to the formation of neoantigens, an element which further supports the 
application of ICIs in advanced or metastatic UC [20–22]. In light of data provided by a variety of 
recent trials, the therapeutic scenario of UC is rapidly changing but, unfortunately, several unmet 
clinical needs still persist [22,23]. 

 
Figure 1. The interaction between PD-1/PD-L1 and CTLA-4/B7-1, a key mechanism exploited by 
immune checkpoint inhibitors. PD-1 inhibitors include nivolumab, pembrolizumab, cemiplimab, 
tislelizumab, and other agents currently in development; conversely, PD-L1 inhibitors encompass 
agents such as atezolizumab, avelumab, durvalumab, while CTLA-4 inhibitors encompass 
ipilimumab and tremelimumab. 

Although cisplatin-based regimens are considered the standard first-line treatment in advanced 
or metastatic UC, more than 50% of patients are ineligible for cisplatin in clinical practice [24]. For 
this non-negligible group of patients, carboplatin plus gemcitabine has been considered the standard 
treatment based on the results of the EORTC 30,986 trial, with several other combinations and agents 
showing less favorable safety profiles and inferior outcomes compared to cisplatin-based first-line 
therapy [25–27]. Thus, the modest survival benefits observed with available treatment options 
highlighted the need for new effective strategies [28] and for this purpose, following small phase I 
trials, the role of ICIs as front-line treatment in cisplatin-ineligible patients was investigated in 
KEYNOTE-052 and IMvigor210 trials [29,30].  

The KEYNOTE-052 [29] was a phase II trial aimed to evaluate the safety and efficacy of 
pembrolizumab monotherapy (200 mg flat dose every three weeks) in 370 chemo-naive, 
cisplatin-ineligible patients. In this setting pembrolizumab, a highly selective humanized 
monoclonal IgG4 isotype antibody against PD-1 protein, produced an overall response rate (ORR) of 
24% with 5% of complete response (CR). Interestingly, the magnitude of ORR and survival benefit 
was related to programmed death ligand-1 (PD-L1) expression: in fact, in patients with PD-L1 
expression combined positive score (CPS) ≥ 10%, pembrolizumab resulted in improved survival, 
with a median OS of 18.5 months versus 11.5 months in overall cohort. Finally, the CPS ≥ 10% 
population reported higher ORR (37%) compared to the CPS < 10% subgroup of patients (ORR = 
18%).  

The IMvigor210 trial [30] was a 2-cohort Phase 2 study; while cohort 2 assessed atezolizumab in 
a post-platinum setting, in cohort 1 the anti-PD-L1 agent was tested as first-line treatment in 
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cisplatin-ineligible subjects. Total of 119 untreated patients were included in cohort 1 and received 
atezolizumab, 1200 mg flat dose every three weeks, achieving an ORR of 23% with CR and partial 
response (PR) of 9% and 12% respectively, regardless of PD-L1 expression. Clinical activity of 
atezolizumab was higher than those observed with systemic chemotherapies traditionally used in 
this setting, in respect of whom the anti-PD-L1 agent showed also a more manageable safety profile.  

Based on the aforementioned studies, pembrolizumab and atezolizumab were approved by the 
US Food and Drug Administration (FDA) and European Medicines Agency (EMA) for front-line use 
in cisplatin unfit patients affected by advanced or metastatic UC. However, the use of 
pembrolizumab and atezolizumab has been subsequently restricted, following early data from 
KEYNOTE-361 and IMvigor130 phase III trials which, as we shall explain later, are currently 
investigating combination chemo-immunotherapy in advanced or metastatic UC. In these two trials, 
patients with low expression of PD-L1 receiving single-agent ICI experienced worse survival 
compared to patients receiving standard chemotherapy [31,32]. 

Following platinum-based chemotherapy, large proportions of patients are either 
non-responders or relapsed, and therefore proceed for second-line treatment [33]. Until some years 
ago, taxanes or vinflunine were considered standard second-line treatments, despite disappointing 
ORRs and an overall modest clinical benefit [34,35]. In this scenario, recent results of Phase I to III 
studies with agents targeting PD-1 and PD-L1 have led to fast approval of ICIs as second-line 
treatments. In particular, five ICIs (two anti-PD-1 agents—pembrolizumab and nivolumab—and 
three anti-PD-L1 agents—atezolizumab, durvalumab, and avelumab) have been granted approval 
by FDA for patients with advanced or metastatic UC whose disease progressed during or following 
platinum-based chemotherapy [36]. Conversely, despite FDA has granted approval for the 
aforementioned agents, pembrolizumab is the only ICI that showed a survival benefit in a phase III 
randomized clinical trial and whose activity is supported by higher levels of evidence [37]. 

The approval of pembrolizumab in post-platinum setting was granted based on the results of 
the KEYNOTE-045 trial [38]. This phase III, open-label, randomized trial compared pembrolizumab 
(flat dose of 200 mg every three weeks) with chemotherapy by investigators’ choice, including 
vinflunine and taxanes, in patients who recurred or progressed after a platinum-based regimen. A 
higher ORR was observed in patients treated with pembrolizumab (21.1% vs. 11.4% of the 
chemotherapy arm); moreover, an OS benefit was observed, regardless of PD-L1 expression (in the 
overall population 10.3 and 7.4 months, in the immunotherapy and chemotherapy arm, respectively, 
hazard ratio (HR) 0.73; 95% confidence interval (CI) 0.59 to 0.91; p = 0.002). Finally, pembrolizumab 
was associated with fewer grade 3–4 adverse events compared to vinflunine, paclitaxel, and 
docetaxel.  

Instead, the activity of atezolizumab was tested in the phase II IMvigor210 and the phase III 
IMvigor211 trials [39,40]. As stated above, the IMvigor210 trial was a 2-cohort phase II study aimed 
to evaluate the efficacy and safety of atezolizumab (1200 mg flat dose every three weeks) in 
untreated, cisplatin-ineligible patients (cohort 1) as well as in patients whose disease was refractory 
to platinum-based chemotherapy (cohort 2) [39]. In the cohort 2, including 315 eligible subjects, an 
ORR of 15% was observed, with a sustained response duration and an acceptable safety profile; 
moreover, in patients presenting PD-L1 expression ≥5% the ORR was higher (27%) and the survival 
benefit longer compared to the PD-L1 ≥ 1 and < 5% cohort and the PD-L1 < 1% group. On the basis of 
these promising findings, the role of atezolizumab was further assessed in the confirmatory phase 
III, open-label, randomized IMvigor211 trial [40], which compared atezolizumab to chemotherapy 
by investigators’ choice, including vinflunine and taxanes, in patients who recurred or progressed 
after a platinum-based regimen. The primary endpoint, OS in patients with PD-L1 expression ≥ 5%, 
did not significantly differ between the two arms, with a median OS of 11.1 and 10.6 months in 
atezolizumab and chemotherapy arms, respectively (HR 0.87; 95% CI 0.63–1.21; p = 0.41). Despite the 
negative primary endpoint, IMvigor211 provided useful data in terms of median duration of 
response, which was significantly higher in the ICI arm (15.9 vs. 8.3 months; HR 0.57; 95% CI 0.26–
1.26) and in terms of toxicity, with the PD-L1 inhibitor confirming a manageable safety profile. 
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Finally, the exploratory analysis of the intention to treat population showed a survival benefit for 
atezolizumab (HR 0.85; 95% CI 0.73–0.99).  

Nivolumab is a human monoclonal IgG4 antibody that blocks the human PD-1 receptor, whose 
efficacy in the post-platinum setting was explored in the CheckMate 275 trial [41]; in this phase II 
trial, nivolumab (240 mg flat dose every two weeks) showed an ORR of 20% with 2% CR in 270 
patients affected by advanced or metastatic UC. With regard to PD-L1 expression, ORR was 
significantly higher in the subgroup of patients with PD-L1 expression ≥5% (28.4%) compared to the 
PD-L1 ≥ 1% (23.8%) and the PD-L1 negative (16.1%) cohorts. 

A similar level of activity was observed with post-platinum avelumab and durvalumab in the 
multicohort phase Ib JAVELIN trial [42] and the single-arm, phase I/II Study 1108 [43], respectively. 
Avelumab (10 mg/kg every two weeks), an anti-PD-L1 antibody that blocks the binding of PD-L1 to 
PD-1, reported an ORR of 17% with 6% CR in platinum-refractory or cisplatin unfit patients; 
interestingly, in PD-L1 negative subgroup ORR fell to 9% while reached the 40% in PD-L1 ≥ 5% 
patients.  

Similarly, considering the cutoff of 25% of PD-L1 expression (assessed with 
immunohistochemistry (IHC) on tumor tissue via Ventana SP263 assay) in Study 1108, the subgroup 
of patients with PD-L1high achieved higher response rates and survival benefit compared to PD-L1low 
cohort (20 vs. 8 months) with the anti-PD-L1 human IgG1 durvalumab [43]. In Study 1108, patients 
were administered durvalumab intravenous infusion, 10 mg/kg every 2 weeks.  

Additional data from a number of ongoing prospective clinical trials will help to confirm the 
activity of ICIs in previously treated and untreated patients [44]; in the era of precision, tailor-made 
oncology, several questions are still unanswered, including the identification of predictive 
biomarkers, sequential treatment strategies, and proper selection of patients in advanced or 
metastatic UC. A non-negligible unanswered question is how to assess PD-L1 expression. For 
example, in KEYNOTE-052 and IMvigor210 PD-L1 cutoff was different and it was assessed 
differently; in KEYNOTE-052 PD-L1 positive tumors were those presenting a CPS ≥ 10% and PD-L1 
expression in formalin-fixed, paraffine-embedded tissue was determined using the PD-L1 clinical 
trial assay (PD-L1 IHC 22C3 pharmDx assay; Agilent Technologies, Carpinteria, CA, USA). 
Differently, in the IMvigor210 trial the VENTANA SP142 immunohistochemistry assay (Ventana 
Medical Systems, Inc.; Tucson, AZ, USA) was used to evaluate PD-L1 expression on 
tumor-infiltrating immune cells (IC) and a scoring criteria designated tumors as IC0, IC1, or IC2/3 
(PD-L1 expression on <1%, ≥1% and <5%, or ≥5% of IC, respectively). 

2.2. Target Therapies 

In the recent years, genomic characterization of advanced-stage UC has given an insight on 
which are molecular drivers at the basis of the oncogenesis and progression of UC and that could be 
potentially targetable (Figure 2) [45]. The Cancer Genome Atlas (TCGA) project for bladder cancer 
had the purpose to provide a comprehensive landscape of molecular alterations [46]. The first 
integrated analysis on 131 UC demonstrated statistically significant recurrent mutations in 32 genes. 
Furthermore, this analysis showed that 69% of the tumors presented potential therapeutic targets, of 
which 42% regarded the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin 
(mTOR) pathway and 44% in the receptor tyrosine kinase/MAPK pathway, and identified an 
in-frame activating FGFR3-TACC3 fusion in three tumors [46]. Alterations in the PI3K/AKT/mTOR 
pathway consisted in point mutations in PIK3CA (17%), mutation or deletion of TSC1 or TSC2 (9%), 
and overexpression of AKT3 (10%). Alterations in the receptor tyrosine kinase/RAS pathway 
included activation of FGFR3 (17%), amplification of EGFR (9%), mutations of ERBB3 (6%), and 
mutation or amplification of ERBB2 (9%). 
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Figure 2. Frequent potentially actionable mutations and pathways involved in UC. EGFR: epidermal 
growth factor receptor; ERK: mitogen-activated protein kinase; FGFR: fibroblast growth factor 
receptor; HER2: receptor tyrosine-protein kinase ERBB2; MAPK: mitogen-activated protein kinase; 
MEK: dual-specificity mitogen-activated protein kinase; mTOR: mammalian target of rapamycin; 
PDGFR: platelet-derived growth factor receptor; PI3K: phosphoinositide 3-kinase; PTEN: 
phosphatase and tensin homologue; VEGFR: vascular endothelial growth factor receptor. 

The TCGA expanded cohort analysis on 412 MIBC that identified 58 significantly mutated 
genes and confirmed the high mutation rate of MIBC [47]. Moreover, RNA expression analysis 
identified five expression subtypes that may stratify response to different treatments: 
luminal-papillary (35%), luminal (6%), basal-squamous (35%), luminal-infiltrated (19%), and 
neuronal (5%) [47]. Recently, a consensus molecular classification of MIBC has been proposed on the 
basis of 1750 MIBC transcriptomic profiles from 18 datasets comparing six molecular classification 
schemes. Six molecular classes were identified: luminal papillary, luminal nonspecified, luminal 
unstable, stroma-rich, basal/squamous, and neuroendocrine-like [48]. This consensus classification 
has possible therapeutic implications. In fact, the different consensus classes are associated with 
different stromal components and genetic alteration that could possibly identify a subset of patients 
more likely to respond to immunotherapy or to target therapy. The identification of molecular 
alterations is of great importance since many target therapies are being studied for the management 
of advanced UT [49]. 

FGFR1, FGFR2, FGFR3, FGFR4 are tyrosine kinases receptor that have been found altered in UC 
[50]. Activating FGFR3 mutations are most common in NMIBC, being identified in approximately 
two-third of these early stage tumors, while their frequency in MIBC is lower (less than 25%), 
including amplifications, mutations, and fusions in FGFR gene [51–54]. The activating FGFR3 
mutation leads to ligand-independent receptor dimerization and constitutive downstream signal 
transduction [54]. The presence of activating point mutations in FGFR3 in early stage tumors is 
associated with favorable outcome [55]. Approximately 7% of UC present an amplification of FGFR1 
[56]. FGFR1 has two splicing variants, FGFR1α and FGFR1β, that are equally expressed in normal 
urothelium, but the FGFR1β variant is predominant in UC and its expression correlates with tumor 
grade and stage [57]. The luminal-papillary subtype of the consensus classification is characterized 
by a high rate of FGFR3 mutations and translocations, suggesting that these tumors may respond to 
FGFR inhibitors [48]. Moreover, FGFR3 pathway was found to be activated in non-T-cell-inflamed 
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tumors that are likely to present intrinsic resistance to ICIs [58]. Furthermore, immunotherapy seems 
to be less effective on TCGA luminal I subtype also based on an exploratory analysis of a phase 2 
trial: luminal I cluster presented lower expression levels of CD8+ genes, lower PD-L1 immune cell or 
tumor cell expression, and lower responses to the anti-PD-L1 atezolizumab [39]. 

With these premises, multi-tyrosine kinase inhibitors targeting FGFR alterations have been 
studied in patients with metastatic UC [59]. The results of a phase 2 trial (BLC2001) testing the 
tyrosine kinase inhibitor of FGFR1–4 erdafitinib have been recently published [60]. In this trial, 99 
patients with locally advanced or metastatic UC with FGFR3 mutation or FGFR2/3 fusion and 
progressed to at least one previous chemotherapy or treatment naïve if cisplatin ineligible were 
assigned to receive erdafitinib, 8 mg per day in a continuous regimen. The primary endpoint of the 
study was ORR. The treatment was found to be active with an ORR of 40% (3% with a complete 
response and 37% with a partial response). The median duration of progression-free survival (PFS) 
was 5.5 months and the median duration of OS was 13.8 months. Interestingly, the 22 patients 
previously treated with ICIs presented a response rate of 59%. Grade 3 or higher treatment-related 
adverse events were reported in nearly half the patients and the most common of any grade were 
hyperphosphatemia, stomatitis, diarrhea. FDA granted accelerated approval to erdafitinib for 
patients with FGFR3 or FGFR2 genetic alterations progressed during or following 
platinum-containing chemotherapy, including within 12 months of neoadjuvant or adjuvant 
platinum-containing chemotherapy. 

Another pathway implicated in UC pathogenesis and progression is vascular endothelial 
growth factor receptors (VEGFR) 1 and 2 and their ligands (vascular endothelial growth factor, 
VEGF-A, -B, -C, and -D) [61,62]. Angiogenesis by microvessel quantification resulted to be an 
independent predictor of survival in patients with invasive bladder cancer and serum levels of 
VEGF have been correlated with tumor stage and grade, vascular invasion and presence of 
metastases [63–65]. 

VEGF/VEGFR inhibitors as single agents or in combination with chemotherapy have been 
investigated for the treatment of advanced UC. Single agent treatment with sorafenib, pazopanib, 
cabozantinib and sunitinib resulted to have limited activity and limited effect on clinical outcomes 
[66–69]. Similarly, combination therapies failed to be shown to be more active than chemotherapy 
alone: vandetanib combined with docetaxel or sunitinib associated with gemcitabine and cisplatin 
did not improve clinical activity and were more toxic [70,71].  

The monoclonal antibody against VEGF Bevacizumab was evaluated in a phase II trial in 
association with gemcitabine and cisplatin in first line of therapy for metastatic UC: the combination 
treatment showed an ORR of 72% and an OS of 19.1 months [72]. Unfortunately, the subsequent 
phase III trial (CALGB-90601 Alliance) failed to show an advantage in OS, the primary endpoint of 
the study, for the combination regimen [73]. 

A phase III randomized trial investigated the combination of ramucirumab plus docetaxel 
versus placebo plus docetaxel in 530 patients with advanced or metastatic UC progressed during or 
after platinum-based chemotherapy [74]. The experimental arm was associated with a significantly 
longer PFS (4.07 months versus 2.76 months in the docetaxel-alone arm) with no OS benefit. 
Additional follow-up confirmed the advantage in PFS (4.1 months versus 2.8 months in the 
experimental arm versus the control arm, respectively; HR 0.696; p = 0.0002) and the lack of 
statistically significant advantage in OS for the combination treatment (9.4 months in the 
experimental arm versus 7.9 months in the placebo group; stratified HR 0.887; p = 0.25) [75]. 

2.3. Antibody-Drug Conjugates  

Another interesting emerging class for the treatment for metastatic UC is antibody-drug 
conjugate (ADC), that consists in monoclonal antibody against a target expressed on cancer cell 
bounded to a cytotoxic agent with a protease-cleavable or non-cleavable linker [76]. When the 
monoclonal antibody binds to a tumor antigen, the drug is internalized and the active 
chemotherapeutic agent is released into the selected cells, leading to cell death. This mechanism of 
cell-killing is supposed to limit exposure and toxicity of cytotoxic agents. One of the most promising 



Cancers 2020, 12, 1449 8 of 47 

 

antibody-drug conjugate currently under investigation in metastatic UC is enfortumab vedotin 
(ASG-22ME). This ADC is composed of an anti nectin-4 (a cell adhesion molecule highly expressed 
in UC) monoclonal antibody liked to a micro-tubule-disrupting agent (monomethyl auristatin E). 
The phase 1 EV-101 trial evaluated enfortumab vedotin in patients with Nectin-4-expressing solid 
tumors, including 155 heavily pretreated patients with metastatic UC [77]. Single-agent enfortumab 
vedotin resulted to be well tolerated and showed clinically meaningful and durable responses with 
an ORR of 43%, a duration of response of 7.4 months, a median OS of 12.3 months, and OS rate at 1 
year of 51.8%.  

The phase II EV-201 single-arm study investigated enfortumab vedotin in locally advanced or 
metastatic UC patients previously treated with ICI and platinum-containing chemotherapy (Cohort 
1) or an ICI and no prior chemotherapy (Cohort 2) [78]. The preliminary data of cohort 1 enrolling 
128 patients have been presented and showed an ORR of 42% with 9% complete responses. The 
safety profile was manageable with fatigue (50%), alopecia (48%), and decreased appetite (41%) as 
most common treatment-related adverse events. Of note, one death was reported as treatment 
related by the investigator (interstitial lung disease). Based on these results, the FDA granted 
accelerated approval to enfortumab vedotin for patients with locally advanced or metastatic 
urothelial cancer who have previously received a PD-1/PD-L1 inhibitor and a platinum-containing 
chemotherapy in the neoadjuvant/adjuvant, locally advanced or metastatic setting. A phase III trial 
evaluating enfortumab vedotin in patients progressed to previous ICI and platinum containing 
chemotherapy is ongoing (NCT03474107, EV-301). 

Preliminary data for the combination of enfortumab vedotin with pembrolizumab for first line 
treatment of cisplatinum ineligible patients with metastatic UC are encouraging. The phase Ib study 
EV-103 (NCT03288545) demonstrated the efficacy of this combination approach in this subset of 
patients with a tolerable and manageable safety profile [79,80]. At the recent 2020 American Society 
of Clinical Oncology (ASCO) Genitourinary Cancer Symposium, the updated results were presented 
by Rosenberg: at a median follow-up of 11.5 months, investigator-assessed objective response rate 
was confirmed to be 73.3%, with 15.6% complete responses [81]. The most common adverse events 
were fatigue (58%), alopecia (53%), and neuropathy (53%). A phase III trial with this combination 
therapy is ongoing (NCT04223856, EV-302). 

Another ADC that has been evaluated in metastatic UC is Sacituzumab govitecan, a humanized 
anti-Trop-2 (an epithelial cell surface antigen overexpressed in UC) monoclonal antibody linked 
with SN-38 (the active metabolite of irinotecan). Sacituzumab govitecan has been investigated in a 
phase I/II basket study in 45 patients progressed after at least one prior systemic therapy [82]. The 
ORR was 31%, including 2 CR and 12 PR. In patients with visceral involvement the ORR was 27% 
and in patients previously treated with ICIs it was 23%. Median PFS and OS were 7.3 months and 
18.9 months, respectively. Among grade ≥3 adverse events there were neutropenia/neutrophil count 
decreased (38%), anemia (11%), hypophosphatemia (11%), diarrhea (9%), fatigue (9%), and febrile 
neutropenia (7%). A global, single-arm, phase II trial which is ongoing (TROPHY-U-01, 
NCT03547973) is evaluating the antitumor activity of Sacituzumab govitecan (10 mg/kg, days 1 and 
8 of 21-day cycles) in patients with advanced UC. Cohort 1 [83] assessed the activity in 35 patients 
progressed to platinum-based regimens and ICIs while cohort 2 [84] enrolled 18 platinum-ineligible 
patients who progressed after first-line ICI. The interim results of cohort 1 demonstrated an ORR of 
29% with 2 confirmed CR, 5 confirmed PR, and 3 unconfirmed PR. The preliminary results of cohort 
2 showed an ORR of 28% with 4 confirmed PRs, and 1 PR pending confirmation. The safety profile 
was consistent with prior reports in both cohorts no treatment-related deaths were reported. 

The evolution of practice changing treatments, including promising therapies approved by 
FDA, for metastatic UC is depicted in Figure 3. Current treatment scenario in metastatic UC is 
reported in Figure 4. 



Cancers 2020, 12, 1449 9 of 47 

 

 
Figure 3. Evolution of practice changing treatments for metastatic urothelial carcinoma. For many 
years, platinum-based chemotherapy has been the gold standard treatment for patients with 
metastatic urothelial carcinoma. Since 2017, immune checkpoint inhibitors entered in the treatment 
scenario. In 2019, two new treatment strategies showed promising results and have been granted 
accelerated approval by the US Food and Drug Administration: erdafitinib and enfortumab vedotin. 

 

Figure 4. Current treatment algorithm for metastatic urothelial carcinoma. Based on cisplatin 
eligibility and PD-L1 positivity, patients are currently being treated as indicated in the figure. If 
cisplatin eligible (depending on eGFR, ECOG PS, peripheral neuropathy, audiometric hearing loss) 
patients should be treated with cisplatin-based chemotherapy. In cisplatin ineligible patients, the 
treatment changes according to PD-L1 positivity. If PD-L1 negative, patients should be treated with 
carboplatin-based chemotherapy. If PD-L1 positive, carboplatin-based chemotherapy or 
immunotherapy are the available options. Second and later lines of treatment depend on previous 
exposure to chemotherapy or immunotherapy. Enrollment in clinical trials should always be 
considered as a treatment option. CHT: chemotherapy. ICI: immune checkpoint inhibitor. PD: 
progressive disease. FGFR: fibroblast growth factor receptor. CPS: combined positive score. PD-L1: 
programmed death ligand-1. eGFR: estimated glomerular filtration rate. ECOG PS: eastern 
cooperative oncology group performance status. 
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3. Therapeutic Approaches UNDER Evaluation 

3.1. Ongoing Trials Evaluating ICIS 

3.1.1. Combination of ICIs with Cytotoxic Chemotherapy 

Several trials exploring the role of ICIs plus chemotherapy in different settings and 
combinations are currently ongoing. As regards the first-line setting, the randomized phase III 
KEYNOTE-361 trial (NCT02853305) is investigating the safety and efficacy of front-line 
pembrolizumab with or without chemotherapy (GC in eligible patients or gemcitabine–carboplatin 
combination in cisplatin unfit subjects) [85]. OS and PFS are the primary endpoints of this study, 
with ORR and safety assessed as secondary endpoints. Similarly, the phase III IMvigor130 trial 
(NCT02807636) has enrolled previously untreated patients affected by advanced or metastatic UC in 
a 1:1:1 ratio to either atezolizumab plus platinum-gemcitabine, atezolizumab monotherapy, or 
platinum-gemcitabine plus placebo [86]. The primary endpoints are OS and PFS; secondary 
endpoints are safety, ORR and DCR. As previously stated, preliminary findings of these two trials 
showing a close relation between PD-L1 expression, type of treatment and clinical outcomes have 
had a relevant impact on current indications of pembrolizumab and atezolizumab in UC. More 
specifically, FDA revised previous indications for the two ICIs, which are now limited for (1) 
first-line treatment in cisplatin-ineligible patients whose tumors express PD-L1 (CPS ≥ 10% for 
pembrolizumab and PD-L1 stained tumor-infiltrating immune cells covering ≥ 5% of the tumor area 
in the case of atezolizumab), (2) subjects which have disease progression during or following 
platinum-containing chemotherapy, or (3) patients unfit for any platinum-based chemotherapy, 
regardless of PD-L1 expression. 

The anti-PD-L1 agent atezolizumab is being also investigated in a phase II trial (NCT03093922) 
aimed to evaluate the safety and efficacy of two different dosing schedules of atezolizumab in 
combination with GC as front-line treatment for advanced or metastatic UC. Regarding less 
commonly used ICIs, a randomized, placebo-controlled, phase III trial (NCT03967977) has been 
initiated to investigate the safety and efficacy of front-line tislelizumab plus standard chemotherapy 
(gemcitabine plus either cisplatin or carboplatin) versus placebo plus standard chemotherapy 
(gemcitabine plus either cisplatin or carboplatin). Tislelizumab (BGB-A317) is a humanized 
monoclonal PD-1 antibody which is being evaluating in several solid tumors [87].  

With regard to second-line setting, atezolizumab is currently under evaluation in 
cisplatin-ineligible patients in an ongoing phase II trial (NCT03737123). In this study, subjects who 
previously received sequential or concurrent ICI and carboplatin-based chemotherapy will be 
treated with atezolizumab plus docetaxel combination; conversely, patients who have already 
received an ICI without prior platinum-based chemotherapy will be treated with atezolizumab plus 
carboplatin-gemcitabine.  

Another anti-PD-L1 agent, avelumab, is being investigated in phase II trial on previously 
untreated, cisplatin-ineligible patients (NCT03390595). In this study, patients are randomized in a 
1:1 ratio to receive avelumab in combination with carboplatin-gemcitabine chemotherapy versus 
carboplatin-gemcitabine alone. Avelumab is also under investigation in a phase II trial comparing 
avelumab plus GC versus GC in cisplatin fit, treatment naïve patients (NCT03324282). PT-112, a 
platinum-based agent belonging to the phosphaplatin family, is under evaluation in combination 
with avelumab in the ongoing phase I/II PAVE-1 trial (NCT03409458).  

The combination of the anti-PD-1 antibody pembrolizumab with paclitaxel is currently under 
investigation in a phase II trial (NCT02581982) on platinum-refractory patients. Lastly, several other 
combinations of anti-PD-1/PD-L1 agents with cytotoxic agents such as pemetrexed, platinum, and 
etoposide are being evaluated in a series of ongoing trials (NCT03744793; NCT03582475). 

Ongoing phase I/I/II trials, either recruiting or active not recruiting, of ICIs in combinations 
with cytotoxic chemotherapy in advanced or metastatic UC are summarized in Table 1.
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Table 1. Ongoing phase I/II/III trials of immune checkpoint inhibitors in combination with cytotoxic chemotherapy. ORR: overall response rate. PFS: 
progression-free survival. OS: overall survival. 

NCT 

Phase Setting Cisplatin 
Fit/Unfit 

Arm A Arm B Arm C Compounds 
Description 

Number 
of 

Patients  

Primary 
Outcome 

Status 

Estimated 
Study 

Completion 
Date 

(Clinicaltrials.gov) 

NCT03409458 
(PAVE-1) Ib/IIa 

First- or 
later-line All 

Avelumab + 
PT-112   

PT-112: 
platinum- 

based agent 
belonging to 

the 
phosphaplat

in family 

52 

Recomme
nded dose 
of PT-112 
to be used 

with 
avelumab 

Recrui
ting May 2020 

NCT02437370 I 
Second- or 
third-line All 

Pembrolizum
ab + docetaxel 

Pembrolizumab 
+ gemcitabine  

Pembrolizu
mab: 

anti-PD-1 
38 Safety 

Recrui
ting 

December 
2020 

NCT03582475 I First- or 
later-line 

All 

Pembrolizum
ab + etoposide 
+ cisplatin (or 
carboplatin) 

  
Pembrolizu

mab: 
anti-PD-1  

30 

Durable 
response 

rate 

Recrui
ting 

September 
2021 

ORR 

Duration 
of 

response 

PFS 

OS 

Safety 

NCT02853305 
(KEYNOTE-361) 

III First-line All Pembrolizum
ab  

Pembrolizumab 
+ gemcitabine + 

cisplatin (or 
carboplatin) 

Placebo + 
gemcitabine + 
cisplatin (or 
carboplatin) 

Pembrolizu
mab: 

anti-PD-1  
990 

PFS Active
, not 

recruit
ing 

May 2020 
OS 

NCT02807636 
(IMvigor130 trial) 

III First-line All Atezolizumab  Atezolizumab + 
gemcitabine + 

Placebo + 
gemcitabine + 

Atezolizum
ab: 

1200 
PFS Active

, not 
November 

2020 OS 
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cisplatin (or 
carboplatin) 

cisplatin (or 
carboplatin) 

anti-PD-L1  Safety recruit
ing 

NCT03093922 II First-line All 
Atezolizumab 
+ gemcitabine 

+ cisplatin 

Atezolizumab + 
gemcitabine + 

cisplatin 
(modified 
schedule) 

Atezolizumab 
+ gemcitabine 

+ cisplatin 
(modified 
schedule) 

Atezolizum
ab: 

anti-PD-L1  
74 ORR 

Recrui
ting March 2021 

NCT03967977 III First-line All 

Tislelizumab + 
gemcitabine + 
cisplatin (or 
carboplatin)  

Placebo + 
gemcitabine + 
cisplatin (or 
carboplatin) 

 

Tislelizuma
b: 

humanized 
monoclonal 

PD-1 
antibody 

420 OS Recrui
ting July 2022 

NCT03737123 II 
Second-line (no 
prior platinum 
chemotherapy) 

Cisplatin 
ineligible 

Atezolizumab 
+ 

chemotherapy 
(docetaxel or 
gemcitabine + 
carboplatin)  

  
Atezolizum

ab: 
anti-PD-L1  

33 PFS 
Recrui

ting January 2022 

NCT03390595 II First-line 
Cisplatin 
ineligible 

Avelumab + 
gemcitabine + 

carboplatin 

Gemcitabine + 
carboplatin  

Avelumab: 
anti-PD-L1  85 ORR 

Active
, not 

recruit
ing 

August 2020 

NCT03324282 II First-line All 
Avelumab + 

gemcitabine + 
cisplatin 

Gemcitabine + 
cisplatin 

 Avelumab: 
anti-PD-L1 

90 
ORR 

Recrui
ting 

December 
2022 Safety 

NCT02581982 II 
Second- or 
later-line All 

Pembrolizum
ab + paclitaxel   

Pembrolizu
mab: 

anti-PD-1  
27 ORR 

Recrui
ting April 2020 

NCT03744793 II Second-line or 
third-line 

All Avelumab + 
pemetrexed 

  Avelumab: 
anti-PD-L1  

25 ORR Recrui
ting 

January 2021 

NCT03575013 I Second- or 
later-line 

All Avelumab + 
paclitaxel 

  Avelumab: 
anti-PD-L1 

21 Safety Recrui
ting 

May 2020 
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3.1.2. Combination of ICIs with Other ICIs 

In recent years, checkpoint-inhibition combination therapies have provided outstanding 
efficacy gains in several malignancies including melanoma, lung cancer and renal cell carcinoma 
[88,89]. The underlying rationale for these combinations lies in the synergistic effect provided by the 
inhibition of CTLA-4 and PD-1/PD-L1, resulting in an enhance of T-cell function through distinct 
pathways [90]. The results obtained in a number of cancer types have led to the recent attempt to 
translate these experiences in advanced or metastatic UC. 

The phase 1/2 CheckMate-032 trial investigated ipilimumab plus nivolumab versus nivolumab 
alone in several malignancies, including platinum-refractory patients affected by advanced or 
metastatic UC [91,92]. In this cohort of subjects, the combination of the two immunotherapies 
yielded a promising response rate of 38%; moreover, subjects treated with the combination showed a 
median OS of 15.3 months versus 9.9 months in the nivolumab arm. The combination of an anti-PD-1 
and a CTLA-4 antibody is being investigated also in the CheckMate-901 trial (NCT03036098) [93], 
aimed to evaluate the efficacy of nivolumab ± ipilimumab versus GC or carboplatin-gemcitabine 
chemotherapy. The same combination with modified schedules and additional 
nivolumab/ipilimumab “boost” cycles is under evaluation also in a Phase II trial (NCT03219775, 
TITAN-TCC) on treatment naïve and platinum-refractory patients with advanced or metastatic UC. 

The anti-PD-L1 agent durvalumab, registered by FDA as monotherapy in previously treated 
patients affected by advanced or metastatic UC, is currently under investigation in combination with 
the CTLA-4 IgG2-kappa monoclonal antibody tremelimumab in the DANUBE (NCT02516241) and 
the NILE (NCT03682068) trials [94,95]. The DANUBE is an ongoing randomized, open-label, phase 
III trial aimed at ascertaining the value of front-line durvalumab ± tremelimumab versus 
platinum-gemcitabine chemotherapy in advanced or metastatic UC [90]. In the same setting of 
previously untreated patients, the NILE trial randomized subjects to three different cohorts: 
durvalumab plus tremelimumab plus platinum-gemcitabine; durvalumab plus 
platinum-gemcitabine; platinum-gemcitabine [95].  

Ongoing phase II/III trials, either recruiting or active not recruiting, of ICIs in combinations 
with other ICIs in advanced or metastatic UC are summarized in Table 2.
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Table 2. Ongoing phase II/III trials of immune checkpoint inhibitor combined with other immune checkpoint inhibitors. ORR: overall response rate. PFS: 
progression-free survival. OS: overall survival. 

NCT 
(Clinicaltrials.gov) 

Phase Setting Cisplatin 
Fit/Unfit 

Arm A Arm B Arm C Compounds 
Description 

Number 
of 

Patients  

Primary 
Outcome 

Status 

Estimated 
Study 

Completio
n Date 

NCT03682068 
(NILE) III 

First-lin
e All 

Durvalumab 
+ 

gemcitabine 
+ cisplatin (or 
carboplatin) 

Durvalumab 
+ 

tremelimuma
b + 

gemcitabine 
+ cisplatin (or 
carboplatin) 

Gemcitabine 
+ cisplatin (or 
carboplatin) 

Durvalumab: 
anti-PD-L1. 

885 

PFS 

Recruitin
g April 2022 

OS Tremelimumab: 
anti-CTLA-4. 

NCT03036098 
(CheckMate-901) 

III First-lin
e 

All Nivolumab + 
ipilimumab 

Gemcitabine 
+ cisplatin (or 
carboplatin) 

Nivolumab + 
gemcitabine 

+ cisplatin (or 
carboplatin) 

Nivolumab: 
anti-PD-1. 

990 

OS in 
cisplatin 
ineligible Recruitin

g 
December 

2022 Ipilimumab: 
anti-CTLA-4  

OS in 
PD-L1 ≥ 

1% 

NCT03219775, 
(TITAN-TCC) 

II 
First- or 
later-lin

e 
All Nivolumab + 

ipilimumab  
  

Nivolumab: 
anti-PD-1. 

80 ORR Recruitin
g 

December 
2020 Ipilimumab: 

anti-CTLA-4. 

NCT02516241 
(DANUBE) 

III First-lin
e 

All 

Durvalumab 
+ 

tremelimuma
b 

Durvalumab 
Gemcitabine 
+ cisplatin (or 
carboplatin) 

Durvalumab: 
anti-PD-L1.  

1126 OS 
Active, 

not 
recruiting 

May 2020 
Tremelimumab: 

anti-CTLA-4. 

NCT03430895 II 
First- or 
later-lin

e 
All 

Durvalumab 
+ 

tremelimuam
b 

  

Durvalumab: 
anti-PD-L1. 

15 ORR 
Active, 

not 
recruiting 

January 
2021 Tremelimumab: 

anti-CTLA-4. 
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3.1.3. Combination of ICIs with Antiangiogenic Agents 

Given the importance of angiogenesis as a crucial process in the carcinogenesis and progression 
of UC, ICIs are under evaluation also in combination with VEGFR antibodies and TKIs, including 
bevacizumab, ramucirumab, lenvatinib, and several others [96,97].  

As regards front-line treatment, the VEGF-A monoclonal antibody bevacizumab is being 
investigated in a phase II trial assessing bevacizumab plus atezolizumab in treatment-naïve, 
cisplatin-ineligible patients (NCT03272217).  

Axitinib, a highly selective VEGFR-1, -2, and -3 inhibitor, is currently under investigation as 
front-line treatment in combination with avelumab in the ongoing phase II trial JAVELIN Medley 
VEGF (NCT03472560). Enrolled subjects are deemed ineligible for receiving cisplatin-containing 
first-line chemotherapy and the primary endpoint is ORR, defined as a confirmed CR or PR.  

Ramucirumab is an IgG1 monoclonal antibody that binds VEGFR-2 preventing ligand binding 
and receptor-mediated pathway activation in endothelial cells [98]. An ongoing, phase I trial is 
assessing the safety of ramucirumab in combination with pembrolizumab in previously treated 
patients affected by a number of solid cancers, including UC (NCT02443324).  

Lenvatinib is a small TKI able to inhibit VEGFR-1, FGFR1–4, stem cell factor receptor (KIT), 
platelet-derived growth factor receptor α (PDGFRα), and rearranged during transfection (RET) [99]. 
The combination of lenvatinib and pembrolizumab is being investigated as front-line treatment in 
the phase III LEAP-011 trial (NCT03898180) which is evaluating the combination in cisplatin-unfit 
subjects with PD-L1 CPS ≥10 or in patients deemed ineligible for any platinum-based regimen, 
regardless of PD-L1 expression.  

Cabozantinib is another small TKI inhibiting a plethora of targets which play an important role 
in tumor growth, angiogenesis, and survival, such as VEGFR-2, MET, RET, KIT, AXL, and FLT3 
[100,101]. Following the findings of a recent phase I trial where cabozantinib plus nivolumab plus 
ipilimumab yielded an ORR of 36% across all genitourinary cancers [102], this molecule is being 
evaluated in combination with pembrolizumab (NCT03534804), durvalumab (NCT03824691), 
atezolizumab (NCT03170960), and nivolumab plus ipilimumab (NCT03866382) in treatment-naïve 
and previously treated patients. Moreover, cabozantinib is also under investigation in a phase II trial 
(NCT04066595) which is enrolling previously treated subjects with platinum-based chemotherapy 
(cohort 1) and platinum-based chemotherapy plus ICIs (cohort 2). 

The anti-VEGF recombinant EphB4-HSA fusion protein is currently under evaluation in 
combination with pembrolizumab in an ongoing phase II trial (NCT02717156). The study is enrolling 
treatment naïve patients affected by locally advanced or metastatic UC.  

Apatinib, a small-molecule TKI which selectively inhibits VEGFR-2 resulting in a decrease in 
endothelial proliferation, migration, and tumor microvascular density, is under evaluation in 
combination with pembrolizumab in a phase I/IIa trial (NCT03407976; APPEASE). In this study, 
eligible subjects must have progressed during or following platinum-based chemotherapy.  

Lastly, sitravatinib, a small TKI able to inhibit VEGFR, PDGFR, KIT, RET, and MET [103], is 
currently under investigation in combination with nivolumab in a non-randomized, Phase II trial 
(NCT03606174). Although all patients are planned to receive the same treatment (nivolumab 240 mg 
every 2 weeks or 480 mg every 4 weeks plus sitravatinib 120 mg orally once per day continuously in 
28-day cycles), eligible subjects are assigned to eight different cohorts, based upon previous 
therapies for UC. 

Ongoing phase I/II/III trials, either recruiting or active not recruiting, of ICIs in combinations 
with antiangiogenic agents in advanced or metastatic UC are summarized in Table 3.
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Table 3. Ongoing phase I/I/II trials of combinations between immune checkpoint inhibitors with antiangiogenic agents. ORR: overall response rate. PFS: 
progression-free survival. OS: overall survival. 

NCT 

Phase Setting Cisplatin 
Fit/Unfit 

Arm A Arm B Arm C Compounds 
Description 

Number 
of 

Patients  

Primary 
Outcome 

Status 

Estimated 
Study 

Completion 
Date 

(Clinicaltrials.gov) 

NCT02496208 I 
Second- or 
later-line All 

Nivolumab + 
cabozantinib 

Nivolumab + 
ipilimumab + 
cabozantinib 

 

Nivolumab: 
anti-PD-1. 

152 Safety Recruiting 
September 

2020 

Ipilimumab: 
anti-CTLA-4. 
Cabozantinib: 

tyrosine kinase 
inhibitor 

NCT02443324 I First- or 
later-line 

All Pembrolizumab 
+ ramucirumab 

  

Ramucirumab: 
anti-VEGF. 

155 Safety 
Active, 

not 
recruiting 

November 
2020 Pembrolizumab: 

anti-PD-1. 

NCT03170960 I/II First- or 
later-line 

All Atezolizumab + 
cabozantinib 

  

Atezolizumab: 
anti-PD-L1 

1723 

Safety 

Recruiting December 
2021 ORR Cabozantinib: 

tyrosine kinase 
inhibitor 

NCT01552434 I 
Second- or 
later-line All 

Temsirolimus + 
bevacizumab + 

cetuximab 

Temsirolimus + 
bevacizumab + 
valproic acid 

Temsirolimus 
+ 

bevacizumab 

Temsirolimus: 
mTOR inhibitor. 

216 Safety Recruiting March 2021 
Bevacizumab: 

anti-VEGF. 
Cetuximab: 
anti-EGFR. 

NCT03407976 
(APPEASE) 

I/IIa Second- or 
later-line 

All Pembrolizumab 
+ apatinib 

  

Apatinib: tyrosine 
kinase inhibitor. 

119 

Safety 
Active, 

not 
recruiting 

June 2023 
ORR Pembrolizumab: 

anti-PD-1. 

NCT03170960 I/II 

Second- or 
later-line 

(with prior 
ICI) 

All 

Expansion 
Cohort 2, 3, 4, 5: 

atezolizumab 
plus 

cabozantinib 

Expansion 
cohort 19: 

cabozantinib 
 

Atezolizumab: 
anti-PD-L1. 

1732 

Safety 

Recruiting December 
2021 ORR Cabozantinib: 

tyrosine kinase 
inhibitor. 

NCT03272217 II First-line 
Cisplatin 
ineligible 

Atezolizumab + 
bevacizumab   

Bevacizumab: 
anti-VEGF 70 OS Recruiting June 2021 

NCT03472560 II Second- or Cisplatin Avelumab +   Avelumab: 61 OR Active, September 
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(JAVELIN Medley 
VEGF) 

later-line ineligible axitinib anti-PD-L1. not 
recruiting 

2020 
Axitinib: tyrosine 

kinase  
inhibitor. 

NCT03898180 
(LEAP-011 trial) III 

First-line, 
PD-L1 ≥ 

10% 

Cisplatin 
ineligible 

Pembrolizumab 
+ lenvatinib 

Pembrolizumab 
+ placebo  Lenvatinib: tyrosine 

kinase inhibitor 694 

PFS 

Recruiting December 
2022 

OS 

NCT03534804 
(PemCab) 

II First-line Cisplatin 
ineligible 

Pembrolizumab 
+ cabozantinib 

  
Cabozantinib: 

tyrosine kinase 
inhibitor 

39 ORR Recruiting September 
2023 

NCT03824691 
(ARCADIA) 

II 
Second-line 

or 
third-line 

All Durvalumab + 
cabozantinib 

  

Durvalumab: 
anti-PD-L1. 

122 OS Recruiting February 
2023 Cabozantinib: 

tyrosine kinase 
inhibitor. 

NCT03866382 II First- or 
later-line 

All 
Nivolumab + 
ipilimumab + 
cabozantinib 

  

Nivolumab: 
anti-PD-1. 

186 ORR Recruiting February 
2023 

Ipilimumab: 
anti-CTLA-4. 
Cabozantinib: 

tyrosine kinase 
inhibitor. 

NCT04066595 
(CabUC) 

II 
Second-line 

or 
third-line 

All Cabozantinib   
Cabozantinib: 

tyrosine kinase 
inhibitor 

88 ORR 
6-month 

Recruiting September 
2024 

NCT02717156 II Second- or 
later-line 

All Pembrolizumab 
+ EphB4-HSA 

  

EphB4-HSA: A 
recombinant fusion 
protein composed 
of the full-length 

extracellular 
domain (soluble) of 

human receptor 
tyrosine kinase 
ephrin type-B 
receptor 4 and 

fused to full-length 
human serum 
albumin, with 

potential 
anti-angiogenic and 

60 Safety Recruiting November 
2021 
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antineoplastic 
activities. 

Pembrolizumab: 
anti-PD-1. 

NCT03606174 II First- or 
later-line 

All Nivolumab + 
sitravatinib 

  

Sitravatinib: 
tyrosine kinase 
inhibitor able to 
inhibit VEGFR, 

PDGFR, KIT, RET 
and MET. 

330 ORR Recruiting September 
2021 

Nivolumab: 
anti-PD-1. 
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3.1.4. ICI Monotherapy 

Although combination therapies are displaying the ability to broaden the anticancer activity of 
ICIs and the majority of ongoing trials are testing ICIs in combination with other anticancer agents, 
some trials are evaluating the role of monotherapy in different settings.  

The anti-PD-1 agent pembrolizumab is being evaluated in a randomized, double-blinded phase 
II trial (NCT02500121) assessing the role of maintenance pembrolizumab (200 mg flat dose every 
three weeks, for up to 24 months) versus placebo after front-line chemotherapy in patients affected 
by metastatic UC. Eligible subjects must have achieved CR, PR or stable disease (SD) after 4 to 6 
cycles of first-line platinum-based chemotherapy; six-month PFS assessment, regardless of PD-L1 
expression, is the primary outcome. Maintenance treatment with ICIs is also under investigation in 
an ongoing phase III trial (NCT02603432) comparing avelumab maintenance plus best supportive 
care versus best supportive care alone in patients whose disease did not progress after first-line 
platinum-based chemotherapy.  

Atezolizumab treatment is being tested in the real-world phase III SAUL trial (NCT02928406) 
and preliminary results of this study assessing the role of atezolizumab in a pretreated population of 
1004 UCs have been recently published [104]. Median OS and PFS were 8.7 and 2.2 months 
respectively, with an ORR of 13%. The trial enrolled patients who experienced progression during or 
after one to three prior therapies, of which 10% had ECOG-PS 2 and 98% were platinum pretreated.  

Toripalimab (JS001), a recombinant, humanized PD-1 monoclonal antibody capable of 
preventing the binding of PD-1 with PD-L1 and PD-L2, is being evaluated as monotherapy in 
pretreated advanced or metastatic UC in an ongoing phase II trial (NCT03113266). The primary 
outcome is ORR, with duration of response, PFS, OS, and safety as secondary outcomes.  

The anti-CTLA-4 agent tremelimumab is currently being evaluated as monotherapy in a phase 
II trial (NCT03557918) assessing ORR in patients with metastatic UC which previously received 
PD-1/PD-L1 blockade.  

The novel anti-PD-L1 CK-301 (Cosibelimab) is being tested in a phase I trial (NCT03212404) on 
a number of advanced malignancies, including UC. Lastly, a phase I trial (NCT03053466) is studying 
the role of the anti-PD-1 agent APL-501 in patients affected by advanced solid tumors presenting at 
least 1% of PD-L1 expression by IHC. 

Ongoing phase I/II/III trials, either recruiting or active not recruiting, of ICI monotherapy in 
advanced or metastatic UC are summarized in Table 4.
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Table 4. Ongoing phase I/II/III trials of monotherapy immune checkpoint inhibitors. ORR: overall response rate. PFS: progression-free survival. OS: overall 
survival. 

NCT 
(Clinicaltrials.gov) 

Phase Setting Cisplatin 
Fit/Unfit 

Arm A Arm B Arm 
C 

Compounds 
Description 

Number 
of 

Patients  

Primary 
Outcome 

Status 

Estimated 
Study 

Completion 
Date 

NCT02500121 II 

Maintenance 
after SD, RP 

or RC to 
first-line 

chemotherapy 

All Pembrolizumab Placebo  
Pembrolizumab: 

anti-PD-1 108 
6-month 

PFS 
Active, not 
recruiting January 2020 

NCT02603432 
(JAVELIN Bladder 

100) 
III 

Maintenance 
after SD, RP 

or RC to 
first-line 

chemotherapy 

All Avelumab 
Best 

supportiv
e care 

 
Avelumab: 
anti-PD-L1 700 OS 

Active, not 
recruiting June 2021 

NCT02928406 
(SAUL) 

III Second-, third 
or fourth- line 

All Atezolizumab    Atezolizumab: 
anti-PD-L1 

1004 Safety Active, not 
recruiting 

March 2022 

NCT03113266 II Second- or 
later-line 

All Toripalimab 
(JS001) 

  Toripalimab: 
anti-PD-1 

370 ORR Recruiting February 2022 

NCT03557918 II Second- or 
later-line 

All Tremelimumab   Tremelimumab: 
anti-CTLA-4 

28 ORR Recruiting July 2021 

NCT03212404 I 
Second- or 

later-line (no 
prior ICI) 

All 
Cosibelimab 

(CK-301)   
Cosibelimab: 
anti-PD-L1 500 

Safety 
Recruiting 

December 
2021 ORR 

NCT03053466 I 
First- or 

later-line, 
PD-L1 ≥ 1% 

All APL-501   
APL-501: 
anti-PD-1 114 Safety 

Active, not 
recruiting 

December 
2021 
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3.1.5. Novel Immunotherapy Approaches 

With the aim to enhance the response to ICIs and other anticancer agents, a number of novel 
immunomodulatory molecules and brand-new combinations are being evaluated in UC [105,106].  

A recently emerging immunotherapeutic target is represented by the indoleamine 
2,3-dioxygenase-1 (IDO1), an enzyme playing a crucial role in immunosuppression, angiogenesis, 
and metastasis [107]; in fact, IDO1 is an immune regulatory enzyme which promotes tryptophan 
depletion, a mechanism necessary for T-cell survival [108]. More specifically, IDO1 enhances the 
activity of CD4+ T regulatory cells and myeloid-derived suppressor cells and, conversely, is able to 
suppress CD8+ T effector and natural killer (NK) cells [109]. Despite early promising results, the 
combination of pembrolizumab plus the IDO-1 inhibitor epacadostat came up short against its 
primary endpoints of OS and PFS; thus, the two trials assessing the role of the anti-IDO-1 ± 
pembrolizumab in treatment-naïve, cisplatin ineligible subjects (NCT03361865) and in 
platinum-refractory patients (NCT03374488) arrested recruitment. Currently, the safety of the 
combination of pembrolizumab plus KHK2455, a long-active selective IDO-1 inhibitor, is being 
evaluated in an ongoing Phase I study on platinum-refractory patients affected by metastatic UC 
(NCT03915405). 

Another attracting target is represented by the tumor necrosis factor receptor OX40 (CD134) 
[110,111]; when activated by its ligand OX40L, OX40 is involved in T-cell signaling activation, 
promoting T-cell survival and enhancing the expression of several molecules such as Bcl-2 
anti-apoptotic molecules, cytokines, cyclin A, and cytokine receptor [112]. Therefore, as OX40 may 
promote proliferation and survival of CD4+ and CD8+ T cells, immunostimulatory agonistic agents 
are currently under investigation in several solid malignancies [113]. The OX40 agonist PF-04518600 
is being evaluated as monotherapy or in combination with the cytokine modulator utomilumab 
(PF-05082566)—a monoclonal antibody with agonist activity toward 4-1BB (CD137), a receptor 
expressed on NK, CD8+, and CD4+ T cells [114]. Preliminary results of this trial, which includes also 
a cohort of patients affected by UC, have shown an ORR of 5.4% across all cancer types; nevertheless, 
the promising 50% of ORR reported in the UC subgroup has led to the NCT03217747 and the Javelin 
Medley (NCT02554812) ongoing phase I/II trials which are evaluating the OX40 agonist PF-04518600 
in combination with ICIs, radiation therapy, utomilumab, and cytotoxic chemotherapy. Finally, the 
hexavalent OX40 agonist INBRX-106 is currently under investigation as monotherapy or in 
combination with pembrolizumab for previously treated patients in a phase I trial (NCT04198766). 

Other immunotherapeutic strategies currently under investigation include cytokine agonists 
such as NKTR-214 (bempegaldesleukin)—an IL-2 pathway agonist which targets CD122, a protein 
expressed in NK and CD8 T cells—ALT-803 and YT107 [115,116]. Following promising early results 
from a Phase I trial across several solid tumors (NCT02983045, PIVOT-02), NKTR-214 is currently 
being evaluated in combination with nivolumab in treatment-naïve, cisplatin ineligible patients 
affected by locally advanced or metastatic UC (NCT03785925, PIVOT-10). Conversely, NKTR-214 is 
now being investigated in the phase I PROPEL trial (NCT03138889) assessing the combination of 
atezolizumab plus NKTR-214 in platinum-refractory UC. Similarly, the recombinant human 
interleukin-7 CYT-107 is under evaluation in combination with atezolizumab versus atezolizumab 
alone in platinum-refractory UCs (NCT03513952); the IL-15 superagonist ALT-803 is being 
investigated as combination therapy with pembrolizumab, nivolumab, atezolizumab, or avelumab 
in previously treated patients (NCT03228667). Finally, an ongoing open-label, non-randomized 
phase I study (NCT03809624) is testing the role of INBRX-105 in advanced solid tumors. INBRX-105, 
a next generation bispecific antibody targeting PD-L1 and 4-1BB, blocks inhibitory PD-1/PD-L1 axis 
and simultaneously activates essential co-stimulatory activity via 4-1BB. Other bispecific antibodies 
such as GEN1046, XmAb20717, XmAb22841, and XmAb23104 are currently under investigation in 
ongoing phase I (NCT03752398, NCT03849469, NCT03517488) and phase I/II (NCT03917381) trials. 

Another potential target is lymphocyte activation gene-3 (LAG-3, CD223), a co-inhibitory 
receptor able to suppress T-cell activation and cytokines secretion [117]; more specifically, LAG-3 
overexpression in tumor cells is involved in the phenomenon of immune exhaustion, with 
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suppression of T-cell function [118,119]. Thus, LAG-3 inhibitors as monotherapy or in combination 
with anti-PD-1 agents are currently being explored in several phase I and II trials in advanced 
malignancies, including pretreated UC (NCT03538028, NCT03250832). 

T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) is another co-inhibitory 
receptor expressed on regulatory T cells, effective T cells, tumor cells, and innate immune cells 
(macrophage and dendritic cells) [120]. TIM-3 expression has been recently associated with poor 
prognosis in a number of cancer types, including UC [121–123]; because of the implication of TIM-3 
overexpression in T-cell dysfunction and exhaustion, several TIM-3 inhibitors are currently being 
studied in advanced cancer. Among them, INCAGN02390 is under evaluation in a phase I trial 
(NCT03652077) assessing its role as monotherapy in previously treated metastatic malignancies 
including UC.  

Glucocorticoid-induced TNF receptor family related receptor (GITR) represents a 
co-stimulatory receptor that binds the GITR ligand (GITRL) [124]; the activation of GITR can result 
in signals influencing the activity of CD4+, CD8+ and regulatory T cells, playing an important role in 
autoimmune and inflammatory diseases as well as in anticancer immune response [125,126]. Thus, 
GITR seems to be a promising target for novel immunotherapy agents. A phase I/II trial analyzing 
the combination of nivolumab, ipilimumab, and the GITR agonist INCAGN01876 (NCT03126110) in 
patients with metastatic malignancies including UC is recruiting at present.  

Chimeric antigen receptor (CAR)-T immunotherapy has shown impressive responses in a 
number of B cell malignancies and is currently being tested in several solid tumors, including 
advanced or metastatic UC (NCT03185468) [127]. CAR-T action is based on engineered T cells 
expressing a CAR; current second-generation CAR are receptors composed of (1) an extracellular, 
epitope-specific binding domain, (2) a transmembrane domain, (3) and an intracellular domain of 
the T cell receptor; this last domain consists in its turn of costimulatory molecules such as CD28, 
4-1BB, and the CD3ζ chain, and is involved in a massive activation of T cells which is independent 
from T-cell receptor (TCR)—major histocompatibility complex (MHC) interactions [128,129]. 

Lastly, another promising immunotherapeutic strategy lies in tumor vaccines (TVs), which are 
currently under investigation in many solid tumors [130,131]. As regards UC, the majority of 
developing TVs concerns BCG-relapsing, non-muscle invasive disease, where neo-antigens are 
being studied in combination with immune-stimulating adjuvant agents, cytotoxic agents, and/or 
mTOR inhibitors (NCT01353222, NCT02015104, NCT01498172). Cancer vaccines are also under 
investigation in combination with ICIs, as in the case of the NCT03689192 and the NCT03639714 
trial. In the NCT03639714 Phase 1/2 Study, two vaccines vectors (GRT-C901 and GRT-R902)—used 
as immune boosts—are being investigated in combination with nivolumab plus ipilimumab in 
patients affected by a number of solid cancers including previously treated, metastatic UC. 

Ongoing phase I/II/III trials, either recruiting or active not recruiting, of novel immunotherapy 
approaches in advanced or metastatic UC are summarized in Table 5.
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Table 5. Ongoing phase I/II/III trials of novel immunotherapy approaches. ORR: overall response rate. PFS: progression-free survival. OS: overall survival. 

NCT 
(Clinicaltrials.gov) 

Phase Setting 
Cisplatin 
Fit/Unfit 

Arm A Arm B Arm C Compounds Description 
Number 

of 
Patients  

Primary 
Outcome 

Status 

Estimated 
Study 

Completion 
Date 

NCT03361865 
(KEYNOTE-672/EC

HO-307) 
III First-line 

Cisplatin 
ineligible 

Pembrolizumab + 
epacadostat 

Pembrolizumab + 
placebo 

 
Epacadostat: IDO1 inhibitor. 

93 ORR 
Active, not 
recruiting 

September 
2020 Pembrolizumab: anti-PD-1. 

NCT03374488 III 
Second- or 
later-line 

All 
Pembrolizumab + 

epacadostat 
Pembrolizumab + 

placebo 
 

Epacadostat: IDO1 inhibitor. 
84 ORR 

Active, not 
recruiting 

August 2020 
Pembrolizumab: anti-PD-1. 

NCT02554812 
(JAVELIN Medley) 

II 
Second- or 
third-line 

All 

6 cohorts, 
different 

combinations 
with avelumab, 

PF-04518600 and 
utomilumab 

(PF-05082566) 

  

PF-04518600: OX40 agonist. 

620 

Safety 

Recruiting 
December 

2022 

Utomilumab: 4-1BB agonist. 

OR 
Avelumab: anti-PD-L1. 

NCT03785925 
(PIVOT-10) 

II First-line 
Cisplatin 
ineligible 

Nivolumab + 
Bempegaldesleuki

n (NKTR-214) 
  

Bempegaldesleukin 
(NKTR-214): IL-2 pathway 
agonist designed to target 

CD122. 
205 ORR Recruiting March 2022 

Nivolumab: anti-PD-1. 

NCT03513952 II 

Second- or 
later-line 

(prior 
platinum 

chemothera
py) 

All 
Atezolizumab + 

CYT-107 
Atezolizumab  

CYT-107: glycosylated 
recombinant human 

interleukin-7. 
54 ORR Recruiting 

December 
2020 

Atezolizumab: anti-PD-L1. 

NCT03915405 I 

Second- or 
later-line 
(no prior 
ICI, prior 
platinum 

chemothera
py) 

All 
Avelumab + 

KHK2455 
  

KHK2455: IDO1 inhibitor. 

44 Safety Recruiting 
February 

2022 Avelumab: anti-PD-L1. 

NCT03217747 I/II 
First- or 

later-line 
All 

6 cohorts, 
different 

combinations 
with utomilumab 

(PF-05082566), 
PF-04518600, and 
radiation therapy 

  

PF-04518600: OX40 agonist 

184 

Safety 

Recruiting 
September 

2023 Utomilumab: 4-1BB agonist 
CD8 

immune 
markers 

NCT04198766 I Second- or All Pembrolizumab ±   INBRX-106: OX40 agonist. 150 Safety Recruiting March 2023 



Cancers 2020, 12, 1449 24 of 47 

 

later-line INBRX-106 Pembrolizumab: anti-PD-1. 

NCT02983045 
(PIVOT-02) 

I/II 
First- or 

later-line 
All 

Nivolumab + 
Bempegaldesleuki

n (NKTR-214) 

Nivolumab + 
ipilimumab + 

NKTR-214 
 

NKTR-214: IL-2 pathway 
agonist designed to target 

CD122. 780 ORR Recruiting 
December 

2021 
Nivolumab: anti-PD-1. 

Ipilimumab: anti-CTLA-4. 

NCT03138889 
(PROPEL) 

I/II 
First- or 

later-line 
All 

Pembrolizumab + 
Bempegaldesleuki

n (NKTR-214) 
  

Bempegaldesleukin 
(NKTR-214): an interleukin-2 
pathway agonist that targets 

CD122. 
135 

Safety 

Recruiting June 2023 
ORR 

Pembrolizumab: anti-PD-1. 

NCT03809624 I 
Second- or 
later-line 

All INBRX-105   

INBRX-105: next generation 
bispecific antibody targeting 

PD-L1 and 4-1BB, blocks 
inhibitory PD-1/PD-L1 axis 

and simultaneously activates 
essential co-stimulatory 

activity via 4-1BB 

90 Safety Recruiting 
December 

2021 

NCT03538028 I 
Second- or 
later-line 

All INCAGN02385   
INCAGN02385: LAG-3 

inhibitor 
40 Safety Recruiting 

September 
2020 

NCT03652077 I 
First- or 

later-line 
All INCAGN02390   

INCAGN02390: TIM-3 
inhibitor 

41 Safety Recruiting January 2021 

NCT03126110 I/II 
First- or 

later-line 
All 

Nivolumab + 
INCAGN01876 

Ipilimumab + 
INCAGN01876 

Nivolu
mab + 

ipilimu
mab + 
INCA
GN018

76 

INCAGN01876: GITR 
agonist. 

285 

Safety 

Recruiting  October 2021 
Nivolumab: anti-PD-1. 

ORR 
Ipilimumab: anti-CTLA-4. 

NCT03185468 I/II 
First- or 

later-line 
All CAR-T    20 

OS 
Recruiting 

December 
2020 Safety 

NCT03639714 I/II Second-line All 

Nivolumab + 
ipilimumab + 
GRT-C901 + 
GRT-R902 

  

GRT-C901, GRT-R902: tumor 
vaccines. 

214 

Safety 

Recruiting March 2023 
ORR Nivolumab: anti-PD-1. 

Ipilimumab: anti-CTLA-4. 

NCT03228667 
(QUILT-3.055) 

II 
Second- or 
later-line 

All 

ALT-803 + ICI 
(nivolumab or 

pembrolizumab 
or avelumab or 
atezolizumab) 

  

ALT-803: ALT-803: 
Superagonist Interleukin-15. 

611 ORR Recruiting August 2020 
Pembrolizumab: anti-PD-1. 

Nivolumab: anti-PD-1. 
Avelumab: anti-PD-L1. 

Atezolizumab: anti-PD-L1. 

NCT03639714 I 
Second- or 
later-line 

All ARG1-18, 19, 20   
ARG1-18, 19, 20: Arginase-1 

Peptide Vaccine 
10 Safety Recruiting June 2021 

NCT03917381 I/II Second- or All GEN1046   GEN1046: bispecific 192 Safety Recruiting February 
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later-line antibody targeting PD-L1 
and 4-1BB 

2022 

NCT03517488 
(DUET-2) 

I 
Second- or 
later-line 

All XmAb20717   

XmAb20717: A 
Fc-engineered bispecific 

antibody directed against the 
human negative 

immunoregulatory 
checkpoint receptors PD-1 

and CTLA-4 

154 Safety Recruiting March 2021 

NCT04044859 I 
Second- or 
later-line 

All 

Autologous 
genetically 
modified 

ADP-A2M4CD8 
cells 

  

Autologous genetically 
modified ADP-A2M4CD8 

cells, directed to MAGE-A4, 
a member of the MAGE 

family expressed in a 
number of solid tumor types.  

30 Safety Recruiting January 2021 

NCT03894618 I 

First-line 
(in 

platinum 
unfit) or 

second- or 
later-line 

All SL-279252   

SL-279252: agonist redirected 
checkpoint fusion protein 

consisting of the extracellular 
domains of PD- 1 and 

OX40L, linked by a central Fc 
domain (PD1-Fc-OX40L). 

87 Safety Recruiting April 2022 

NCT03849469 
(DUET-4) 

I 
Second- or 
later-line 

All XmAb®22841 
Pembrolizumab + 

XmAb®22841 
 

XmAb®22841: a 
Fc-engineered bispecific 

antibody directed against 
CTLA-4 and LAG-3. 

242 Safety Recruiting March 2027 

Pembrolizumab: anti-PD-1 

NCT03752398 
(DUET-3) 

I 
Second- or 
later-line 

All XmAb®23104   

XmAb23104: bispecific 
monoclonal antibody 

directed against PD-1 and 
inducible T-cell co-stimulator 

CD278 

144 Safety Recruiting March 2025 

NCT03758781 I 
First- or 

later-line 
All 

IRX-2 Regimen 
plus Nivolumab 

  

IRX-2 Regimen: 
cyclophosphamide and 
subcutaneous IRX-2, a 

cell-free mixture comprising 
a variety of naturally derived 

cytokines obtained from 
normal, unrelated donor 

lymphocytes with potential 
immunostimulatory activity. 

The cytokines in IRX-2 
include interleukin-1, -2, -6, 
-8, -10, -12, tumor necrosis 

factor alpha, 
interferon-gamma and 

100 Safety Recruiting 
February 

2022 
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colony stimulating factors. 
Nivolumab: anti-PD-1. 

NCT03841110 I 
First- or 

later-line 
All FT500  

FT500 + 
nivolumab or 

pembrolizumab 
or atezolizumab 

 

FT500: natural killer cell 
product that can bridge 

innate and adaptive 
immunity. 76 Safety Recruiting June 2022 

Pembrolizumab: anti-PD-1. 
Nivolumab: anti-PD-1. 

Atezolizumab: anti-PD-L1. 

NCT03329950 I 
Second- or 
later-line 

All CDX-1140 
CDX-1140 + 

CDX-301 

CDX-1
140 + 

pembr
olizum

ab 

CDX-1140: anti-CD40, a key 
activator of immune 

response which is found on 
dendritic cells, macrophages 

and B cells and is also 
expressed on many cancer 

cells. 220 Safety Recruiting 
November 

2021 
CDX-301: recombinant 

human FMS-like tyrosine 
kinase-3 ligand that acts by 
uniquely binding FMS-like 
tyrosine kinase-3 (CD135). 
Pembrolizumab: anti-PD-1. 

NCT03674567 I/II 

First-line 
(in 

platinum 
unfit) or 

second- or 
later-line 

All FLX475 
FLX475 + 

pembrolizumab 
 

FLX475: antagonist of C-C 
chemokine receptor type 4 

with potential 
immunomodulatory and 
antineoplastic activities. 

FLX475 inhibits the binding 
of CCR4 to its signaling 

molecules, thereby blocking 
the recruitment of regulatory 

T cells to the tumor 
microenvironment. 

375 

Safety 

Recruiting August 2021 
ORR 

Pembrolizumab: anti-PD-1. 

NCT03970382 I 
Second- or 
later-line 

All NeoTCR-P1 
NeoTCR-P1 + 

nivolumab 
 

NeoTCR-P1: A preparation 
of autologous CD4- and 

CD8-positive T lymphocytes 
that have been engineered 
with site-specific nucleases 

to suppress the expression of 
most endogenous forms of 

the T-cell receptor and 
promote expression of a 

single, native T-cell receptor 
targeting a neoepitope 

148 Safety Recruiting 
December 

2023 
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presented on the surface of a 
patient’s tumor cells, with 

potential 
immunostimulating and 
antineoplastic activities. 
Nivolumab: anti-PD-1. 

NCT03277352 I/II 
Second- or 
later-line 

All 
INCAGN01876 + 
Pembrolizumab + 

Epacadostat 
  

Epacadostat: IDO1-inhibitor. 

10 

Phase 1: 
safety.  

Active, not 
recruiting 

May 2020 

INCAGN01876: anti-human 
glucocorticoid-induced 
tumor necrosis factor 

receptor agonistic 
humanized monoclonal 
antibody, with potential 

immune checkpoint 
modulating activity. 

Phase 2: 
ORR and 
complete 
response 

rate 

Pembrolizumab: anti-PD-1. 
NCT03250832 

(CITRINO) 
I 

Second- or 
later-line 

All TSR-033 
TSR-033 + an 

anti-PD-1 agent 
 

TSR-033: anti-LAG-3 
monoclonal antibody 

200 Safety Recruiting May 2021 

NCT03693612 I/II 
Second- or 
later-line 

All 
GSK3359609 plus 

tremelimumab 
  

GSK3359609: agonistic 
antibody for the inducible 
T-cell co-stimulator (ICOS; 

CD278), with potential 
immune checkpoint 

inhibitory and antineoplastic 
activities. 

114 Safety Recruiting April 2023 

Tremelimumab: 
anti-CTLA-4. 

NCT03739931 I 

First line in 
cisplatin 
ineligible 

and PD-L1 
negative 
patients; 

second-line 
after 

platinum-c
ontaining 

chemothera
py 

All mRNA-2752 
mRNA-2752 plus 

durvalumab 
 

mRNA-2752: lipid 
nanoparticle encapsulating 
mRNAs encoding human 
OX40L, IL-23, and IL-36γ. 

126 Safety Recruiting July 2021 

Durvalumab: anti-PD-L1. 
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3.2. PARP Inhibitors 

One of the new promising therapeutic approaches is the use of Poly(ADP-ribose) polymerase 
(PARP) inhibitors that target DNA repair gene mutations and have been proven active in other type 
of cancer like ovarian, breast, and prostate cancer [132,133]. 

Regarding UC, genomic alterations in DNA repair genes like ATM, ERCC2, RAD51B were 
found in 2–14% and in BRCA 1/2, PALB2, FANCD2, ERCC2, ATM in 3.7–12.3% of MIBC [47,134]. 
Moreover, patients with DNA damage response and repair (DDR) gene alterations treated with 
platinum based chemotherapy resulted to have better PFS and OS [135]. In fact, in multiple tumors 
the presence of DDR gene aberrations correlates with an enhanced sensibility to platinum 
compounds [136]. Based on these results, PARP inhibitors have been studied in UC as well [137–
140]. At the recent ASCO Genitourinary Cancers Symposium 2020, the results of the study ATLAS 
(NCT03397394) were presented [136]. This phase II trial assessed the efficacy and safety of the PARP 
inhibitor rucaparib in 97 patients with locally advanced or metastatic UC with or without 
homologous recombination deficiency (HRD), progressed to one or two prior treatments. Total of 
20.6% of patients were HRD-positive, 30.9% were HRD-negative, and 48.5% had unknown HRD 
status. Among patients with sequencing results (64 patients), deleterious alterations in BRCA1, 
BRCA2, RAD51C, PALB2 were infrequent (9.4%). Common alterations were found in TP53 (52.4%) 
and in FGF/FGFR pathway (77.6%). The results showed that there were no confirmed responses to 
rucaparib, 28.1% of patients achieved a stable disease as best response with no difference in efficacy 
between HRD-negative and HRD-positive patients. The trial was discontinued because 
protocol-defined continuance criteria were not meet. Two phase II trials are investigating the PARP 
inhibitor olaparib in monotherapy in chemotherapy naïve cisplatin ineligible patients or progressed 
to first line treatment selected for DDR mutations (NCT03448718) and in patients with DNA-repair 
defects progressed to 1 or 2 prior treatment regimens (NCT03375307). 

A phase II trial is currently investigating the PARP inhibitor niraparib as maintenance therapy 
until disease progression or unacceptable toxicity or death in patients unselected for DDR 
mutational status not progressing to first line platinum-based chemotherapy (NCT03945084). 

Another strategy being tested is combination therapy of PARP inhibitors with ICIs or target 
therapies. 

Indeed, the presence of alteration in DDR genes has been associated with higher mutational 
load and higher response to ICIs in patients with UC [141,142]. Based on these observations, several 
combinations of PARP inhibitors and PD-1/PD-L1 inhibitors are currently being tested: durvalumab 
plus olaparib (module B, NCT02546661, active not recruiting; NCT03459846, active not recruiting), 
rucaparib plus nivolumab (NCT03824704, active not recruiting), niraparib plus atezolizumab 
(NCT03869190, recruiting). 

The phase I BISCAY (NCT02546661) trial is evaluating the combination of durvalumab with 
olaparib or a FGFR1-3 inhibitor (AZD4547) or a TORC 1 and 2 inhibitor (vistusertib) in platinum 
refractory, immuno-therapy naïve UC patients allocated depending on tumour DNA alterations 
determined by next generation sequencing. Total of 391 patients were screened and NGS analysis 
showed the following absolute frequency of biomarkers: FGFR1–3 fusions or FGFR3 activating 
mutations in 21% of cases (83 patients in the AZD4547 arm/391), HRR deleterious gene alterations 
(ATM, BARD1, BRCA1, BRCA2, BRIP1, CDK12, CHEK1, CHEK2, FANCI, FANCL, PALB2, RAD51B, 
RAD51C, RAD51D, RAD54L) in 14% of cases (54 patients in the olaparib arm/391), RICTOR 
amplification and TSC1/TSC2 loss or inactivating mutations in 15% cases (60 patients in the 
Vistusertib arm/391). The preliminary results available on 14 patients with homologous 
recombination repair genomic alterations treated with olaparib and durvalumab showed a high 
tumor mutation burden and a confirmed ORR of 35.7%, a 6-months PFS rate of 42%, 1-years OS rate 
of 54% [143]. 

A phase Ib-II trial (NCT03992131) is evaluating the combination between the PARP inhibitor 
rucaparib and lucitanib, a VEGFR1-2-3, FGFR1-2, and PDGFRα-β inhibitor, or sacituzumab 
govitecan. 
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Ongoing phase I/II/III trials, either recruiting or active not recruiting, of PARP inhibitors in 
advanced or metastatic UC are summarized in Table 6.
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Table 6. Ongoing phase I/II/III trials of PARP inhibitors. ORR: overall response rate. PFS: progression-free survival. OS: overall survival. 

NCT 
(Clinicaltrials.gov) 

Phase Setting Cisplatin 
Fit/Unfit 

Arm A Arm B Arm 
C 

Compounds Description 
Number 

of 
Patients  

Primary 
Outcome 

Status 

Estimated 
Study 

Completion 
Date 

NCT03682289 II 
Third- or 
later-line All AZD6738 

AZD6738 
plus olaparib  

AZD6738: an orally available 
morpholino-pyrimidine-based 

inhibitor of ataxia telangiectasia 
and rad3 related kinase. 

68 ORR Recruiting March 2023 

Olaparib: PARP inhibitor. 

NCT03945084 II 
Maintenance 
after first-line 

treatment 
All 

Niraparib + 
best 

supportive 
care 

Best 
supportive 

care 
 Niraparib: PARP inhibitor 77 PFS Recruiting June 2024 

NCT03375307 II Second- or 
third-line 

All Olaparib   Olaparib: PARP inhibitor 150 ORR Recruiting August 2023 

NCT03448718 II 

Second- or 
later-lines; 
cisplatin 

ineligible; 
chemotherapy 

naïve 

All Olaparib   Olaparib: PARP inhibitor 30 ORR Recruiting March 2023 

NCT03459846 
II First-line 

Cisplatin 
ineligible 

Durvalumab 
+ olaparib 

Durvalumab 
+ placebo  

Durvalumab: anti-PD-L1. 
154 PFS 

Active, 
not 

recruiting 

September 
2021 (BAYOU) Olaparib: PARP inhibitor. 

NCT03992131 I/II 
Second- or 
later-line All 

Rucaparib 
and 

Lucitanib 
(phase Ib) 

Rucaparib 
and 

Sacituzumab 
govitecan 

(phase Ib and 
II) 

 

Sacituzumab govitecan: 
humanized anti-Trop-2 

monoclonal antibody linked 
with SN-38, the active 

metabolite of irinotecan.  329 

Safety and 
tolerability, 

dose 
limiting 
toxicities 

(phase Ib), 
ORR (phase 

II) 

Recruiting March 2024 
Lucitanib: VEGFR 1, 2 and 3, 

FGFR 1 and 2, and PDGFR alpha 
and beta inhibitor. 

Rucaparib: PARP inhibitor. 

NCT02546661 
(BISCAY) 

I Second- or 
third-line 

All 

8 cohorts: 
AZD4547;  

  

AZD4547: FGFR-1, 2 and 3 
inhibitor. 

156 Safety 
Active, 

not 
recruiting 

March 2020 AZD4547 + 
durvalumab; AZD1775 (adavosertinib): 

inhibitor of the tyrosine kinase 
WEE1. durvalumab 

+ olaparib;  
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durvalumab 
+ AZD1775; 

Durvalumab: anti-PD-L1. 

durvalumab; 
Vistusertib: mTOR inhibitor. durvalumab 

+ vistusertib; 
durvalumab 
+ AZD9150; 

AZD9150 (danvatirsen): an 
antisense oligonucleotide 

targeting signal transducer and 
activator of transcription 3 

(STAT3). durvalumab 
+ 

Selumetinib Selumetinib: MEK or 
MAPK/ERK kinase 1 and 2 

inhibitor. 
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3.3. Target Therapy 

As already discussed, the FGFR inhibitor erdafitinib is a promising treatment strategy in 
patients with FGF/FGFR alterations. In these subgroup of patients, other therapies directed at 
inhibiting FGFR are currently being tested: PRN1371, a FGFR 1-4 inhibitor, in a phase I trial in 
previously treated patients (NCT02608125); Pemigatinib, a FGFR1-3 inhibitor, in phase II trial in 
patients progressed to at least one prior treatment (NCT02872714, FIGHT-201); Rogaratinib 
(BAY1163877), a FGFR 1-4 inhibitor, in a phase II/III trial in patients progressed to at least one 
platinum-containing regimen (NCT03410693). 

Moreover, FGFR inhibitors are being evaluated in combinations with PD-1/PD-L1 inhibitors. A 
study by Sweis et al. showed that FGFR3 pathways were activated in non-T-cell-inflamed UC, 
characterized by an absence of intratumoral T cells, thus identifying a potential targetable pathway 
that could help to overcome tumor-intrinsic immunotherapy resistance [58]. The updated results of 
the interim analysis of the phase II study FIERCE-22 (NCT03123055) evaluating the combination of 
the FGFR3 inhibitor vofatamab (a human IgG1 monoclonal antibody directed against FGFR3) in 
combination with pembrolizumab in 28 patients (20 wild-type) progressed following 
platinum-based chemotherapy have been presented at European Society for Medical Oncology 
(ESMO) Congress 2019: the combination therapy resulted to be well tolerated with encouraging ORR 
(29.6%) and a median PFS is 4.7 months [144]. 

Combination of FGFR inhibitors and ICIs currently under investigation in ongoing clinical trials 
are: Rogaratinib ± atezolizumab in first-line treatment of cisplatin ineligible patients with FGFR 1-3 
alterations (NCT03473756, FORT-2); pemigatinib ± pembrolizumab versus standard of care 
(chemotherapy or pembrolizumab) in first-line treatment cisplatin-ineligible patients with FGFR3 
mutation or rearrangement (NCT04003610, FIGHT-205); derazantinib (a FGFR 1-3 inhibitor) ± 
atezolizumab in cisplatin ineligible patients with FGFR alteration in first-line or progressed to prior 
FGFR inhibitor treatment (NCT04045613); erdafitinib plus cetrelimab (an IgG4 monoclonal antibody 
directed against PD-1) in pretreated (phase Ib) or previously untreated cisplatin-ineligible patients 
(phase II) (NCT03473743). 

Other target therapy treatments under evaluation are PI3K/mTOR inhibitors since this pathway 
resulted to be frequently altered in UC, as already discussed [46]. mTOR inhibitors and PI3K 
inhibitors are currently being tested alone (everolimus: NCT00805129, sapanisertib: NCT03047213, 
Buparlisib: NCT01551030), and in combination with anti-PD-1/PD-L1 (nivolumab plus 
nab-rapamycin: NCT03190174, durvalumab plus vistusertib: NCT02546661, module E) or 
chemotherapy (paclitaxel plus TAK-228: NCT03745911). 

Another interesting pathway being investigated is targeting human epidermal growth factor 
receptor 2 (HER2, ERBB2) considering that mutation or amplification of ERBB2 gene has been 
identified in 9% of MIBC [46]. Trastuzumab deruxtecan is an ADC composed of trastuzumab, a 
monoclonal antibody targeting HER2 conjugated to deruxtecan, a derivative of the camptothecin 
analog exatecan, a DNA topoisomerase 1 inhibitor. This compound is being tested in combination 
with nivolumab in a phase I/II trial in patients with HER2 expression of IHC 1+, 2+ or 3+, progressed 
to prior platinum-based therapy (NCT03523572). RC48-ADC, an anti-HER2 monoclonal antibody, in 
under evaluation in two phase II trial in previously treated patients, one in HER2 negative (IHC 0 or 
1+, NCT04073602) and one in HER2 overexpressed tumors (IHC 2+ or 3+, NCT03809013). PRS-343, a 
bivalent, bispecific fusion protein composed of an anti-HER2 monoclonal antibody linked to a 
CD137-targeting anticalin, is being investigated in HER2 positive solid tumor malignancy, including 
UC, for which standard therapies are not available.  

Ongoing phase I/II/III trials, either recruiting or active not recruiting, of target therapies in 
advanced or metastatic UC are summarized in Table 7, while miscellanea therapies are reported in 
Table 8.
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Table 7. Ongoing phase I/II/III trials of target therapies. ORR: overall response rate. PFS: progression-free survival. OS: overall survival. 

NCT 
(Clinicaltrials.gov) Phase Setting 

Cisplatin 
Fit/Unfit Arm A Arm B Arm C 

Compounds 
Description 

Number 
of 

Patients  

Primary 
Outcome Status 

Estimated 
Study 

Completion 
Date 

NCT03980041 
(MARIO-275) II 

First- or 
later-line All 

Nivolumab + 
IPI-549 

Nivolumab + 
placebo  

IPI-549: PI3K 
inhibitor. 

160 ORR Recruiting 
November 

2022 Nivolumab: 
anti-PD-1. 

NCT03745911 II Second- or 
later-line 

All Paclitaxel + 
TAK-228 

  
TAK-228: 

PI3K/AKT/mTOR 
inhibitor 

52 ORR Recruiting November 
2020 

NCT00805129 II Second-, third 
or fourth- line 

All Everolimus   Everolimus: mTOR 
inhibitor 

46 
PFS Active, 

not 
recruiting 

December 
2020 Safety 

NCT02567409 II 

First-line or 
second-line 
(only with 
prior ICI) 

All 

Gemcitabine + 
cisplatin + 
berzosertib 

(M6620) 

Gemcitabine + 
cisplatin  

Berzosertib (M6620): 
ATR kinase inhibitor 90 PFS 

Active, 
not 

recruiting 
August 2020 

NCT03047213 II Second- or 
later-line 

All Sapanisertib   
Sapanisertib: 
mTORC1 and 

mTORC2 inhibitor 
209 ORR Recruiting June 2020 

NCT02535650 II Second- or 
later-line 

All Tipifarnib   
Tipifarnib: 

farnesyltransferase 
inhibitor 

18 6-month PFS Recruiting March 2020 

NCT01551030 II Second- or 
later-line 

All Buparlisib   Buparlisib: PI3K 
inhibitor 

35 PFS 
Active, 

not 
recruiting 

March 2020 

NCT04073602 II 

Second- or 
later-line; 

HER-2 
negative 

All RC48-ADC   
RC48-ADC: 
anti-HER2 

monoclonal antibody 
20 ORR Recruiting 

October 
2020 

NCT03809013 
 II 

Second- or 
later-line; 

HER2 
overexpressed 

All RC48-ADC   
RC48-ADC: 
anti-HER2 

monoclonal antibody 
60 ORR Recruiting 

December 
2021 

NCT02795156 II Second-line All 
Afatinib or 

Regorafenib or   
Afatinib, Regorafenib, 

Cabozantinib: 160 ORR Recruiting 
December 

2020 
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Cabozantinib 
(based on specific 

genomic 
alterations on 

next-generation 
sequencing) 

tyrosine kinase 
inhibitor 

NCT02872714 
(FIGHT-201) 

II Second- or 
later-line 

All Pemigatinib   Pemigatinib: FGFR 
inhibitor 

240 ORR Recruiting August 2020 

NCT03410693 
II/III Second- or 

later-line All Rogaratinib 
(BAY1163877) Chemotherapy  Rogaratinib: FGFR 

inhibitor 171 OS 
Active, 

not 
recruiting 

November, 
2020 (FORT-1) 

NCT04003610 
(FIGHT-205) II First-line 

Cisplatin 
ineligible 

Pemigatinib + 
Pembrolizumab Pemigatinib 

Chemotherapy 
or 

pembrolizumab 

Pemigatinib: FGFR 
inhibitor. 

372 PFS Recruiting June, 2024 
Pembrolizumab: 

anti-PD-1. 

NCT03190174 I/II Second- or 
later-line 

All 
Nivolumab + 

ABI-009 
(Nab-rapamycin) 

  

ABI-009 
(Nab-rapamycin): 
mTOR inhibitor. 40 Safety Recruiting April 2021 

Nivolumab: 
anti-PD-1. 

NCT03523572 I/II 
Second- or 
later-line All 

Trastuzumab 
Deruxtecan 
(DS-8201a) + 
Nivolumab 

  

Trastuzumab 
Deruxtecan 

(DS-8201a): antibody 
drug conjugated 

composed of 
trastuzumab, a 

monoclonal antibody 
targeting HER2 
conjugated to 
deruxtecan, a 

derivative of the 
camptothecin analog 

exatecan, a DNA 
topoisomerase 1 

inhibitor. 

99 Safety, ORR Recruiting 
September 

2020 

Nivolumab: 
anti-PD-1. 

NCT03330561 I 
Third- or 
later-line All PRS-343   

PRS-343: anti-HER2 
monoclonal antibody 

linked to a 
78 Safety Recruiting 

September 
2020 
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CD137-targeting 
anticalin 

NCT02546661 
(BISCAY) I 

Second- or 
third-line All 

8 cohorts: 
AZD4547;  

  

AZD4547: FGFR-1, 2 
and 3 inhibitor. 

156 Safety 
Active, 

not 
recruiting 

March 2020 

AZD4547 + 
durvalumab; 

AZD1775 
(adavosertinib): 
inhibitor of the 
tyrosine kinase 

WEE1. 

durvalumab + 
olaparib;  

durvalumab + 
AZD1775; 

durvalumab; 

durvalumab + 
vistusertib; Durvalumab: 

anti-PD-L1. 

durvalumab + 
AZD9150; 

Vistusertib: mTOR 
inhibitor. 
AZD9150 

(danvatirsen): an 
antisense 

oligonucleotide 
targeting signal 
transducer and 

activator of 
transcription 3 

(STAT3). 

durvalumab + 
Selumetinib 

Selumetinib: MEK or 
MAPK/ERK kinase 1 

and 2 inhibitor. 

NCT02608125 I 
Third- or 
later-line All PRN1371   

PRN1371: FGFR 
inhibitor 50 Safety Recruiting 

February 
2021 

NCT03473756 
I/II First-line Cisplatin 

ineligible 
Rogaratinib + 
Atezolizumab 

Placebo + 
Atezolizumab 

 Rogaratinib: FGFR 
inhibitor 

210 Safety, PFS Recruiting September, 
2024 (FORT-2) 

NCT04045613 I/II 

First-line; 
later-lines 
after prior 

FGFR 
inhibitor 

Cisplatin 
ineligible Derazantinib 

Derazantinib + 
Atezolizumab  

Derazantinib: FGFR 
inhibitor. 

303 
ORR; 

recommended 
phase 2 dose 

Recruiting May, 2022 
Atezolizumab: 

anti-PD-L1. 

NCT03473743 I/II Phase 1b: 
second- or 

Phase 2: 
cisplatin 

Erdafitinib + 
Cetrelimab 

  Erdafitinib: FGFR 
inhibitor. 

150 Safety, ORR Recruiting September, 
2021 
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later-line. ineligible 
Phase 2: 
first-line 

Cetrelimab: 
anti-PD-1. 

Table 8. Ongoing phase I/II/III trials of miscellanea therapies. ORR: overall response rate. PFS: progression-free survival. OS: overall survival. 

NCT 
(Clinicaltrials.gov) 

Phase Setting Cisplatin 
Fit/Unfit 

Arm A Arm B Arm C Compounds 
Description 

Number 
of 

Patients  

Primary 
Outcome 

Status 

Estimated 
Study 

Completion 
Date 

NCT03854474 I/II 
Second- or 
later-line All 

Pembrolizumab 
+ tazemetostat   

Tazemetostat: 
Enhancer of zeste 
homolog 2 (EZH2) 
methyltransferase 

inhibitor. EZH2 is a 
histone-lysine 

N-methyltransferase 
enzyme participating 

in histone methylation 
and, ultimately, 
transcriptional 

repression. 

30 ORR Recruiting June 2020 

Pembrolizumab: 
anti-PD-1. 

NCT04200963 I Second- or 
later-line 

All KYN-175   Aryl Hydrocarbon 
Receptor antagonist 

53 Safety Recruiting September 
2022 

NCT04007744 I 

First-line (in 
platinum unfit) 
or second- or 

later-line 

All Pembrolizumab 
+ sonidegib 

  

Sonidegib: Hedgehog 
signaling pathway 

inhibitor. 45 Safety Recruiting June 2021 
Pembrolizumab: 

anti-PD-1. 

NCT03829436 I 
First- or 
later-line All 

TPST-1120; 
TPST-1120 + 
nivolumab; 
TPST-1120 + 

docetaxel; 
TPST-1120 + 
cetuximab 

  

TPST-1120: selective 
antagonist of 
peroxisome 

proliferator activated 
receptor alpha. 

338 Safety Recruiting June 2024 

Nivolumab: anti-PD-1. 
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Cetuximab: anti-EGFR. 

NCT02420847 I/II 
Second- or 
later-line All 

Ixazomib + 
Gemcitabine + 
Doxorubicin 

  

Ixazomib: second 
generation proteasome 
inhibitor with potential 
antineoplastic activity 

50 Safety 
Active, 

not 
recruiting 

July 2022 

NCT00365157 I/II Second- and 
third-line 

All Eribulin   
Eribulin: 

microtubule-targeting 
agent 

132 

Maximum 
tolerated dose 

and 
recommended 
phase II dose, 

ORR 

Active, 
not 

recruiting 

December 
2020 

NCT03179943 II 

First-line (in 
platinum unfit) 
or second- or 

later-line (with 
prior 

platinum-based 
chemotherapy 

or ICI) 

All 
Atezolizumab + 
guadecitabine   

Guadecitabine: DNA 
methyltransferase 
(DNMT) inhibitor. 

53 

Safety  

Recruiting July 2022 
ORR 

Atezolizumab: anti- 

PD-L1. 

NCT03547973 II 

First-line (in 
platinum unfit) 
or second- or 

later-line (with 
prior 

platinum-based 
chemotherapy 

or ICI) 

All 
Sacituzumab 

govitecan 
(IMMU-132) 

  

Sacituzumab govitecan 
(IMMU-132): 

Anti-Trop-2/SN-38 
Antibody-Drug 

Conjugate 

201 ORR Recruiting September 
2021 

NCT04223856 

III First-line 

Cisplatin 
or 

carboplatin 
eligible 

Enfortumab 
vedotin + 

pembrolizumab 

Enfortumab 
vedotin + 

pembrolizumab 
+ cisplatin or 
carboplatin 

Gemcitabine 
+ cisplatin or 
carboplatin 

Enfortumab vedotin: 
anti nectin- 4 

monoclonal antibody 
liked to a micro- 

tubule-disrupting 
agent (monomethyl 

auristatin E). 

1095 PFS, OS Recruiting 
November 

2023 (EV-302) 

Pembrolizumab: 
anti-PD-1. 
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NCT03474107 

III Third- or 
later-line All Enfortumab 

vedotin 

Chemotherapy 
(docetaxel, 
vinflunine, 
paclitaxel) 

 

Enfortumab vedotin: 
anti nectin- 4 

monoclonal antibody 
liked to a micro- 

tubule-disrupting 
agent (monomethyl 

auristatin E) 

608 OS 
Active, 

not 
recruiting 

September 
2021 (EV-301) 
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4. Conclusions 

In the recent years, the treatment scenario of metastatic UC has been enriched with several new 
therapeutic options. Immunotherapy is a very promising approach for this disease, but a high 
percentage of patients are still resistant to this type of treatment. In the future years, the results of the 
ongoing trials investigating ICIs in combination with target therapy or chemotherapy will assess if 
resistance to ICIs alone can be overcome. Promising treatment approaches are FGFR inhibitors and 
enfortumab vedotin. These two treatment strategies already showed good results in monotherapy 
and combination therapies with ICIs being tested. Other compounds, such as PARP inhibitors, 
mTOR inhibitors, anti-VEGF, tyrosine kinase inhibitors, HER2 targeting therapies, either alone or in 
several types of combinations, are being investigated in clinical trials. 

The therapeutic approach to UC, which for many years has been dominated by platinum 
containing chemotherapy based on clinical and laboratory variable defining cisplatin eligibility, is 
now shifting toward a more personalized approach, based on the presence of molecular alteration 
(e.g., FGFR alterations) or PD-L1 expression. 
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