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Abstract: Land use at landscape and field scales can increase the diversity and abundance of
natural enemies for pest control. In this study, we investigated interactions between landscape
elements (semi-natural vegetation, olive orchards, vineyards, other agricultural areas) and inter-row
management (vegetation cover vs. bare soil) in relation to arthropod populations in Andalusian
vineyards. Arthropods were collected from grapevine foliage in 15 vineyards using suction sampling.
Landscape structure was analyzed within a 750 m radius surrounding the studied vineyards.
Arthropods were categorized into functional groups (predators, parasitoids, herbivores), and their
responses to the most influencing factors were analyzed by likelihood methods and model selection.
Of the total of 650 arthropods collected, 48% were predators, 33% herbivores and 19% parasitoids.
Numbers of predatory aeolothrips, parasitoids and herbivorous cicadas in the study vineyards
decreased with an increased proportion of vineyards in the surroundings. Spider populations in
vineyards increased with increasing proportions of other agricultural fields (non-flowering crops)
in the surroundings. Semi-natural elements and olive orchards had no influence on the abundance
of collected arthropods. We observed synergistic effects between landscape elements and inter-row
management. The total numbers of arthropods, herbivores and parasitoids in vineyards benefitted
from inter-row vegetation, while spiders benefitted from bare soil. Our findings underline the
importance of both surrounding landscape elements and vineyard ground cover management to
promote beneficial arthropods for potential natural pest control.

Keywords: agroecosystems; arthropods; biological control; management effects; landscape ecology;
viticulture; ecosystem services

1. Introduction

The intensification of agriculture, with increasing field sizes at the expense of natural and
semi-natural elements and high pesticide and fertilizer inputs, causes serious environmental problems
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including habitat and biodiversity loss [1–3]. However, biodiversity is strongly connected with
ecosystem services such as natural pest regulation [4–6], and the conservation and protection of
biological diversity has therefore become an important part of agri-environmental policies and
science [7]. Moreover, conservation biological control (CBC) is increasingly seen as an alternative to
the use of pesticides, especially in integrated production systems [8–10].

Practices stimulating CBC include the establishment, modification and management of natural and
semi-natural elements (SNEs), such as cropland boundaries, hedgerows, fallows, grasslands, woodlands
and forests. These SNEs can provide food, alternative prey and hosts, shelter, overwintering sites and
other essential resources [11–13]. Sometimes, SNEs do not promote natural enemies [14,15] and can even
foster disservices by providing habitats for pest species and crop diseases [16,17]. However, a number
of studies have shown that the overall abundance and richness of natural enemies is generally higher
in heterogenous landscapes with SNEs [18–24]. To increase natural pest control, it is also important to
maintain diverse predator assemblages in agroecosystems [25–27], because of spatial and temporal
differences in the diversity and abundance of generalist and specialist natural enemies [28,29]. A high
proportion of SNEs surrounding crop fields can translate into pest suppression [24,30,31] but not
always [23,32,33]. Also, improved local habitat quality, e.g., via vegetation cover, can enhance natural
enemy populations and can be advantageous for crop production, especially in simple structured
landscapes [2,9,26,34,35]. Ground cover with perennial crops commonly stimulates the abundance of
beneficial arthropods [36–40] but this effect depends on various factors such as the type, composition
and management of the cover crop; type and management of the field crop; type of natural enemies
and pest arthropods; and climatic conditions [33,41–43]. However, most previous studies did not
consider possible synergistic effects between ground cover and surrounding landscape structure on
natural enemy populations in perennial crop fields [44,45].

The diversity of farming systems and the interactions of different types of habitats with natural
enemies, as well as interactions between species, result in complex responses for different groups
of arthropod natural enemies. Therefore, findings are often case-specific and difficult to translate to
other agroecosystems [32,46]. Further, these interactions have mainly been studied in annual arable
crop systems while less focus has been put on perennial crops, although pest regulation by natural
enemies has been reported to be higher in the latter [47,48]. It seems that the generally lower level of
disturbance and the permanency of both crop vegetation, such as grapevines, and non-crop vegetation
do benefit natural enemies because arthropods can find alternative prey and/or shelter during periods
of disturbance caused by crop management activities, e.g., the application of pesticides or tillage
operations [49].

Vineyards are managed with different intensities and strategies. For example, the timing
and frequency of herbicide applications or soil tillage of inter-row strips determines the diversity
of the plants and arthropods that can inhabit these strips [50]. The integration of ecological and
viticultural practices can produce win-win solutions for both wine growers and nature conservation [51].
Thus, a comprehensive understanding of how natural enemy populations are altered by SNEs in the
surrounding landscape and vineyard inter-row management is necessary to foster natural pest control.

We hypothesized that in vineyards, inter-row vegetation cover and surrounding landscape
elements influence arthropod populations on vines. The goal of this research was (i) to investigate the
effects of inter-row management (bare soil vs. vegetation cover) on the abundance and diversity of
arthropods on vines; (ii) to determine whether these effects are influenced by surrounding landscape
elements and; (iii) to identify potential synergistic effects between inter-row management systems
and surrounding landscape elements. Findings could enable different stakeholders to promote CBC
while potentially reducing the use of insecticides and their negative effects on biodiversity and
the environment.
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2. Materials and Methods

2.1. Study Area

The study was conducted in the Montilla-Moriles wine region, near Córdoba (37◦38′–29′ N,
4◦45′–31′ W), Andalusia, Spain. Although olive orchards dominate Andalusia’s agricultural landscape,
winegrowing has a long tradition dating back at least to Roman times. In the study area, vines are
cultivated on 5052 hectares at an altitude between 220 m and 682 m above sea level. Vineyards are
interspersed with olive orchards, other agricultural crops, shrubs, grassland, grass stripes and tree
rows (Figure 1). The region is characterized by a continental Mediterranean climate with an annual
average temperature of 17.2 ◦C. Winters are mild and frosts are rare, while summers are typically hot
with maximum daily temperatures of up to 40 ◦C. The hottest months are July and August with daily
average temperatures of 28 ◦C. Grapes in this area receive between 2800 h and 3000 h of sunshine.
The average annual rainfall is 604 mm, with precipitation mainly during the cooler winter months
from December to February [52]. The typical soil types of the Montilla-Moriles region are “alberos” or
“albarizas”, white soils that combine permeability with high moisture retention (around 30%) [53].
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2.2. Experimental Design and Sampling

2.2.1. Vineyards

Within the region, 15 conventional vineyards were selected according to differences in landscape
complexity based on the proportion of semi-natural elements (SNEs) in the surrounding area. Vineyards
were planted with the white grape variety Pedro Ximénez either in the traditional horizontal goblet
system or in the trellis system (Figure 1). Within-row distances varied between 1.20 and 1.90 m,
and inter-row distances between 1.75 m and 3.00 m. Fourteen vineyards were conventionally managed
with similar fertilizer and pesticide inputs following recommended viticultural practices for the region,
while one vineyard was cultivated according to the principles of organic farming.

Vineyards were classified into two groups regarding the inter-row management that had been
implemented for at least the last three years. Eight vineyards had a temporary vegetation cover
consisting of sown barley or a mixture including cereals, legumes and cruciferous plants, or had
spontaneous vegetation (treatment vegetation cover). This vegetation was tilled or treated with
herbicides at the beginning of March to prevent water competition. The other seven vineyards were
more frequently tilled and/or treated with herbicides, resulting in bare soil throughout the year
(treatment bare soil) [50].

2.2.2. Arthropod Sampling

Collection of arthropods took place on 23 May 2016, when grapevine flowerhoods were separating
(phenology state BBCH 57), and on 1 July 2016, when berries were pea-sized (BBCH 75). Our aim
was to investigate arthropods that directly inhabit vines. Therefore, in each vineyard, samples of
arthropods were taken from the inside of the foliage wall along one vine row per study vineyard.
Sampling was conducted with a portable field aspirator (InsectaZooka, BioQuip Product, Inc. Rancho
Dominguez, CA, USA) along 10 m of the vine foliage wall for 40 s. This was conducted six times,
covering a transect of 60 m per vineyard. Vine rows in the region are commonly several hundred
meters long. Thus, in total 180 samples were taken across the study vineyards. All captured arthropods
were frozen before being identified using a light microscope and an identification key [54]. Details on
inter-row vegetation in the study vineyards are given in [50]. Briefly, a total of 52 plant taxa were
identified in the inter-rows across the vineyards. The number of different species identified at the
inter-rows of the bare soil and cover crop vineyards was 32 and 44, respectively. The Sørensen index
(IS) between the inter-rows of the bare soil and cover crop vineyards was 63.2%, indicating significant
differences between the plant communities of the two inter-row treatments. Despite these differences
in vegetation communities, some plant species such as Brassica nigra were present in all vineyards.

2.3. Landscape Analysis

To assess the surrounding landscape structure, landscape elements within a 750 m radius around
the center of the sampled vineyards were assessed by field mapping in 2016. Landscape elements
were categorized according to CORINE Land Cover and EUNIS Habitat Classification into SNEs
(hedges, tree rows, grass stripes, natural grassland, shrubs, woodlots, soft surfaced paths and roads and
flowering crops), olive and other orchards, viticultural areas, other agricultural areas (non-flowering
crops, mainly cereals), water items (ponds, rivers) and artificial/constructed entities (non-productive
areas, urban areas, buildings and hard surfaced roads). Mapping and analysis were conducted using
the programs ArcGis 10.2.1 [55], QGIS 2.8.1 [56], [57] FRAGSTATS 4.2 and CHLOE2012 [58].

2.4. Data Analysis

Due to the low number of individuals trapped, samples from both collection dates were pooled
for each vineyard, resulting in one measurement per arthropod taxon per vineyard. Missing data
from one vineyard were treated as not available (NA). Further, we examined data as one group
(total) including all arthropod taxa and three subgroups summarizing predators, parasitoids and
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herbivores. As predators, we considered spiders (Araneae), aeolothrips (Thysanoptera: Aeolothripidae),
ants (Hymenoptera: Formicidae), larvae of Chrysoperla carnea (Neuroptera: Chrysopidae), other
net-winged insects (Neuroptera), flower bugs (Hemiptera: Anthocoridae), ladybirds (Coleoptera:
Coccinellidae) and snakeflies (Raphidioptera). Insect parasitoids (Hymenoptera) were treated
separately. As herbivores, we considered thrips (Thysanoptera), cicadas (Hemiptera: Cicadoidea),
aphids (Hemiptera: Aphidoidea), psyllids (Hemiptera: Psyllidae) and grasshoppers (Orthoptera).

For data analysis, we used likelihood methods and model selection as an alternative to methods
of traditional hypothesis testing [59]. We pre-selected explanatory variables according to their
significance and frequency of occurrence. Then, we used Pearson correlations to check co-linearity
among our selected explanatory variables (SNEs, vineyards, orchards, other agricultural areas).
We established 13 linear models (LMs) using a Gaussian error distribution. Before computing the
models, we log-transformed the response variables to better meet the assumption of this kind of analysis.
We built four basic models, which contained only one of our explanatory variables (orchard area in
percentage, vineyard area in percentage, other agricultural areas in percentage, area of semi-natural
elements in percentage). The management models contained a combination of our explanatory variables
and inter-row management, or the interaction of the landscape variables with inter-row management.
We tested our models for arthropod groups (total arthropods, predators, herbivores, parasitoids) and
for all arthropod groups, separately, that contained at least 25 individuals. Thus, we tested 143 models
in total.

For model selection, we used the Akaike Information Criterion corrected for small sample sizes
(AICc). The model with the lowest AICc and a difference of more than two units to the next AICc
score was chosen as the “best” model. If multiple models did not fit the criteria and more than one
model was plausible and contained the variable of the other model, we used the most complex one.
The analyses were performed in R Studio [60] with R packages lme4 [61] and MuMIn [62].

3. Results

Landscape data analysis showed that the selected study sites were mainly surrounded by orchards
(on average, 50% of the area), followed by vineyards (25%), other agricultural areas (10%) and SNEs
(8%) (Table 1).

Table 1. Surrounding landscape types for the studied vineyards. Numbers are mean percentages ± SD.

Landscape Structure
Inter-Row Management

Bare Soil (in %) Vegetation Cover (in %)

Semi-natural elements 1 7.9 ± 3.3 9.0 ± 3.1
Orchards 2 50.8 ± 7.8 49.6 ± 17.2
Vineyards 26.5 ± 12.5 23.1 ± 15.9

Other agriculture 3 5.5 ± 6.9 14.1 ± 17.0
1 55% consisted of soft-surfaced agricultural roads, 18% tree roads, 16% grass stripes, 4% hedges, 3% natural
grassland, 1.5% shrubs and grassland, 1% woodlots, 0.2% flowering crops; 2 98% olive orchards; 3 cereals.

In total, 650 arthropod specimens were trapped on both data collection dates (Table 2). Of these,
314 individuals (ind., 48.3%) were predators, 120 ind. parasitoids (18.5%) and 216 ind. (33.2%)
herbivores. Table 3 presents a comparison of alternative models representing those that best fit the
different response variables.
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Table 2. Overview of main arthropod groups (predators, parasitoids, herbivores, in bold letters) and
respective taxa trapped in vineyard plots on both sampling dates.

Arthropod Taxa Counts % of Total Catch

Predators 314 48.3
Aeolothrips 130 20.0

Ants 97 14.9
Spiders 75 11.5

Chrysoperla carnea larvae 6 0.9
Cocinellidae 2 0.3
Neuroptera 2 0.3

Raphidioptera 1 0.15
Anthocorids 1 0.15
Parasitoids 120 18.5
Herbivores 216 33.2

Thrips 72 11.1
Cicada 50 7.7

Grasshoppers 48 7.3
Aphids 27 4.2
Psyllids 19 2.9

Total arthropods 650 100

Table 3. Comparison of alternative models (using Akaike Information Criterion corrected for small
sample sizes, AICc) for the main arthropods and groups found in Andalusian vineyards. The best
model(s) is indicated in bold font. SNE = semi-natural elements.

Model Parameter Total Predators Herbivores Aeolothrips Parasitoids Spiders Cicadas

Basic models

Null 29.0 26.0 16.6 11.0 11.9 7.3 4.6
SNE 32.2 29.1 19.8 14.1 15.1 9.6 7.6

Other agric. 26.3 22.8 15.8 13.7 9.8 −10.3 4.5
Viticulture 20.2 21.5 11.4 7.1 2.1 6.6 1.5
Orchards 31.3 28.6 18.9 10.4 14.9 9.5 7.4

Management models

Null 29.0 27.9 14.4 13.7 12.4 10.4 7.1
SNE + management 32.7 31.7 17.8 17.5 16.2 13.1 10.6
SNE ×management 37.1 35.5 22.3 22.1 20.1 15.8 15.2

Other agric. + management 28.4 26.5 15.8 17.3 12.3 −9.2 8.2
Other agric. ×management 33.1 31.1 20.2 21.6 16.8 −4.6 11.8
Viticulture + management 19.4 24.3 7.8 10.7 2.0 10.4 4.9
Viticulture ×management 24.0 27.8 11.6 15.1 4.3 15.0 9.4
Orchards + management 31.4 31.0 16.5 13.4 15.9 13.2 10.4
Orchards ×management 35.7 35.7 20.8 17.9 19.4 17.8 14.5

Multiple R2 0.67 - 0.65 0.38 0.58 0.79 0.34
Adjusted R2 0.62 - 0.59 0.33 0.55 0.76 0.29

The resulting estimated parameters are shown in Table 4. More detailed results for our established
groups (total and herbivores) and each relevant single group (parasitoids, spiders, aeolothrips, cicada)
are given below. No best model could be identified for ants, aphids, thrips and grasshoppers.
Total counts of larvae of Chrysoperla carnea and other net-winged insects, flower bugs, ladybirds,
psyllids and snakeflies were too low to be further analyzed (Table 2).
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Table 4. Parameter estimates for the selected best models of the abundance of individual arthropod
taxa and groups. Semi-natural elements and orchards were not among the selected models and are
therefore not shown.

Taxa
Estimates

Intercept Vineyard as % of
Surrounding Area

Agric. Land as % of
Surrounding Area

Presence of
Vegetation Cover

Total
arthropods 1.86 −0.028 - 0.38

Herbivores 0.93 −0.01 - 0.34
Aeolothrips 0.83 −0.02 - -
Parasitoids 0.83 −0.02 - 0.19

Spiders 0.15 - 0.02 −0.11
Cicada 0.47 −0.01 - -

For total arthropods and the herbivore group, models including surrounding vineyard area and
management showed the best fit (Table 3). In both groups, surrounding vineyard area had a negative
effect on arthropod numbers in the studied vineyards. Thus, with increasing surrounding vineyard
area, the mean abundance of total arthropods and herbivores decreased, but was generally higher in
plots with vegetation cover compared to plots with bare soil (Figure 2).
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In the case of our predator group, the best-fit models included agricultural area and vineyard
area (Table 3). Because of two influencing independent variables (vineyard area, agricultural area),
this model is no longer considered.

Aeolothrips (130 ind. caught) were the most abundant beneficial insects (Table 2). Our best-fit
model included only vineyard area (Table 3); abundance of aeolothrips decreased with increasing
vineyard area (Figure 3a). Spider abundance (75 ind.) was best fit with a model containing the variables
of agricultural area and inter-row management (Table 3). This was the only natural enemy group where
we detected a positive influence of the surrounding landscape structure (agricultural area) on mean
abundance, being higher in vineyards with bare soil than in those with vegetation cover (Figure 3c).
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arthropods: (a) aeolothrips; (b) parasitoids; (c) spiders; and herbivorous insects: (d) cicadas.
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differences between vegetation cover and bare soil could be detected (black solid line).

Parasitoids (120 ind.) were the second most abundant natural enemy group (Table 2). As for
aeolothrips, models including vineyard area and inter-row management fitted best (Table 3),
with increasing vineyard area having a negative effect on the abundance of parasitoids (Figure 3b).
Again, the mean abundance of parasitoids was higher in plots with vegetation cover.

Cicadas (50 ind.) represented the second most abundant herbivore group in the vineyards (Table 2).
No influence of inter-row management on mean abundance was detected. The best fit model for
cicadas included surrounding vineyard area (Table 3), exerting a slightly negative effect (Figure 3d).

4. Discussion

The present study is among the first to investigate the influence of surrounding landscape elements
and inter-row soil management on the abundance of arthropods in Andalusian vineyards. We found
contrasting effects on beneficial arthropods and on herbivores. This is in line with other studies from
more temperate regions showing that habitat management in the field and landscape elements play an
important role in affecting arthropods of different functional guilds [11,63–65].

While non-crop habitats close to crops are regarded as a source of beneficial populations [34,66–68],
the SNEs in our study’s vineyards had little influence on the abundance of arthropods that we collected.
This contrasts with some previous studies [28,44,69–71]. However, most previous studies examined
annual arable crops, which differ from perennial crops such as grapevines in terms of frequencies
of disturbance for sowing, soil cultivation and harvesting, the use of agrochemicals and resource
availability over time [72–75]. It could also be that in our study the conditions in some elements of our
SNE group (e.g., tree rows, grass strips) were still more hospitable to the arthropods than the vineyards,
so they did not migrate into vineyards [76,77]. Furthermore, our SNEs consisted of 55% soft-surfaced
roads, which do not provide appropriate habitats for the investigated arthropods. Additionally, we did
not observe an effect of the surrounding olive orchards, the predominant crop in the region, indicating
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that little arthropod migration takes place between these two perennial cropping systems [70,71].
However, more detailed studies would be necessary to further investigate this.

The surrounding vineyard area always had a negative impact on the abundance of arthropods in
the studied vineyards, suggesting that arthropod populations might be diluted across vineyards in the
landscape. A similar pattern has also been observed for oilseed rape [30]. Furthermore, the effect was
most pronounced on aeolothrips, parasitoids and cicadas, suggesting different responses to disturbance
and habitat characteristics as well as different dispersal ranges. [64,74,78,79]. In any case, our findings
indicate the importance of heterogenous landscapes in order to sustain a broad diversity of natural
enemies [80,81].

Further, we found that other agricultural areas surrounding vineyards (i.e., non-flowering crops
such as cereals) increased the occurrence of spiders in the vineyards. First, this could mean that these
areas may have functioned as a source for spiders, from where they migrated into the vineyards [70].
Second, and particularly in landscapes with arid conditions, perennial crops such as vineyards with
vegetation cover could have provided better resources for spiders than other agricultural areas did.
Indeed, we detected synergistic effects between landscape factors and inter-row management. At least
for total arthropods, herbivores and parasitoids, vegetation cover had a positive influence [74,82].
In the case of parasitoids, the positive synergistic effect between surrounding vineyard area and
vegetation cover within the sampled vineyards might also be due to the host- and habitat-specification
of parasitoids [64,83] and thus to their stronger response to landscape complexity at smaller scales [28].
Our results on parasitoids underline previous findings that vegetation cover could be beneficial
for natural enemies [38,84–86] by providing resources such as nectar, pollen, alternative hosts and
shelter [40,70,87,88].

Spiders were more abundant in vineyards with bare soil. This is in contrast to an earlier finding that
total spider densities in vineyards were unaffected by vegetation cover [89], and other studies reporting
positive effects of vegetation cover on spider populations [33,37,90]. However, these contrasting effects
are perhaps due to considering spiders in the vegetation cover versus spiders on the vines [33,89,91,92].
We assume that the higher spider abundance in plots with bare soil was due to a lack of prey on
bare soil and a preference for the foliage wall [93,94]. Moreover, climatic preferences and especially
humidity on the soil surface could have played an important role [29,33].

Also, climatic factors, e.g., July being one of the hottest and driest months in the year, could be the
reason for the rather low arthropod abundances in our study.

5. Conclusions

In summary, our study is a first attempt to investigate inter-relationships between vineyard
management and landscape structure on a variety of arthropod taxa in an infrequently studied
Mediterranean vineyard ecosystem. The findings show that both landscape elements and field
management practices affect the abundance of arthropods in vineyards. We found little influence of
SNEs on vineyard arthropods, but a positive effect of vegetation cover in vineyards on some natural
enemy taxa. However, the patterns found have to be interpreted with caution as the observed arthropod
abundances were rather low. Assessments of predation and parasitism rates of the most important
pest taxa (e.g., grape berry moths) would be necessary to gain a more comprehensive understanding of
further effects on potential natural pest control. Based on these results, we recommend integrating
local management and landscape structure parameters in existing pest management strategies.
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